

TSUBAKI POWER CYLINDER

HIGH PERFORMANCE LINEAR ACTUATORS OFFERING EFFICIENT, CLEAN AND QUIET DRIVE----- ENVIRONMENTAL CONSCIOUSNESS

Easy and economical to combine with your equipment

The mechanical type motor driven actuator reduces the need for compressors, piping valves or hydraulic units, making the equipment simpler and more economical. The device can be treated as a motor and allows for simple remote control. Furthermore, the simple construction and long life grease provide for more economical maintenance.

Ready for outdoor use

T series, G series , Ultra heavy duty series, F series, Battery series

With Electromagnetic brake motor

T series, G series, Ultra heavy duty series

Battery powered actuator

DC motor type Battery series, F series

Three phase motor with brake

for precise positioning, and rigid load holding

T series, G series , Ultra heavy duty series

Internal position sensor; Limit switch type

available at your choice for signaling the position of the stroke

T series, G series , F series

Potentiometer or Rotary encoder

available at your choice for remote control operation

T series, G series , Ultra heavy duty series

device available as made -to-order If the actuator rod end is free or

Rod anti-rotation

connected to wire rope, anti-rotation device for a rod is needed.

T series, G series , Ultra heavy duty series

External limit switches

F series

available at your choice for adjusting stroke of the actuator **T series, G series , Ultra heavy duty series,**

Press loaded stopping device

for safety and thrust sensing A combination of dish springs and limit switches is used to provide thrust sensing and press loaded stopping.

Available for **T series LPTC type** and , **G series LPGC type**, Battery series

Mounting type and an end fitting

Clevis or trunnion mount and I type end fitting are available for T series, G series, Ultra heavy duty series F series -clevis mount only

Bellows

To be used in dusty area at your choice

T series, G series , Ultra heavy duty series, F series

Multi type actuator

available for synchronized operation with one motor Multi series

Jack type

(Ball screw or trapezoidal screw) Lini-power jack available by a separate catalog 1.96-980KN (0.2-100tf)

						T	Seri	es							Ultr	a He	avy				Mul	ti Se	eries			
	TE	3 typ	be						TC	type	l.				Dut	y Se	ries		тв	typ	е		٦	Г <mark>С</mark> ty	vpe	
• For general industrial use, hopper gate & dumper																										
		•	For g High	jenera grade	 al indu e serie	ustrial es with	use, 1 vari	hoppe ous o	er gat ptiona	e & d al pari	umpe ts	r			• Ult du	ra he ty	avy			ronize e unit		eratio	n of			
58.8k	78.4k	118k	157k	314k	2.45k	4.90k	9.80k	19.6k	39.2k	58.8k	78.4k	118k	157k	314k	617k	882k	1230k	4.90k	9.80k	19.6k	39.2k	58.8k	78.4k	118k	157k	31
6000	8000	12000	16000	32000	250	500	1000	2000	4000	6000	8000	12000	16000	32000	63000	90000	125000	500	1000	2000	4000	6000	8000	12000	16000	32
6.3/7.6	10/12	-			12.5/15	12.5/15	12.5/15	12.5/15	9/11	6.3/7.6	10/12													input r.	p.m	I
						25/30											7.5/9		See N	lax. In	put r.p	o.m. on	page	55.		-
						50/60										10/12										
42/50	43/52	30/36	31/37	20/24	100/120	100/120	100/120	75/90	60/72	42/50	43/52	30/36	31/37	20/24												
															1	1	1			-						
•	•	1	1	1								1	1	1	1	1	1							1	1	1
1	1	1	1	1					1	1	1	1	1	1	1	1	1					1	1	1	1	1
•	•	•					•	1	1												1					
1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1				1	1	1	1	1	1
						1		T	1										1	T	T					
					1			1	1									1	1	1	1					
1	1	1	1	1	1	1	1		1	1	1	1	1	1					1	1		1	1	1	1	1
					1	1		1	1									1	1	1	1					
					↑ ↑	↑	<u>↑</u> ↑	↑↑	↑ ↑									↑ ↑	<u>↑</u> †	↑	↑					
							-												•	-						
							utdo) Dr								Dutdo						Dutdoo				
		•					uluot																			
		•				•								•												
		\triangle																								
		0)					0 0			_		0						
		0								2																
		0))						\triangle										
		•														\triangle				•				•		
		0								C										0				0		
	0 0							0				0				0										
	0 0							0				<u> </u>		_												
<u> </u>							0 				0				0											

		Bat	tery	' Ser	ies	_						G Se	eries	;				т	Seri	es	
		Sm	all	Μ	id.		Serie	es	Ģ	а́А-к	typ	е	C	GC-K	typ	е		TI	B typ	be	
		Compact and light DC 12V or 24V				Image: Second system Image: Second system Image: Second						gate & dumper									
						_															
Thrust	N	98.0	392	980	1.47k	98.0	196	392	700		1.50k	3.00k	700	1.00k	1.50k		2.45k	4.90k	9.80k		
	{kgf}	10	40	100	150	10	20	40	71.4	102	153	306	71.4	102	153	306	250	500	1000	2000	4000
	Slow																12.5/15	12.5/15	12.5/15	12.5/15	9/11
Speed (mm/sec.)	Low		15		17			15	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30	25/30
(mm/sec.) 50/60Hz	Medium	50		27			24												50/60		
	High					54			100/120 200/240	100/120 200/240	100/120	67/80	100/120 200/240	100/120 200/240	100/120	67/80	100/120	100/120	100/120	75/90	60/72
	3000mm																				
	2000mm																				
	1500mm																				
	1200mm									1		1									•
	1000mm										•	-		-	-				+	-	
										<u>+</u>		1									
	800mm								1	1	1	1	T		T						
Stroke	600mm								1	1	1	1	1	1	1	1	1	1	1	1	1
	500mm								1	1	1	1	1	1	1	1	1	1	1	1	1
	400mm								1	1	1	1	1	1	1	1	1	1	1	1	1
	300mm						1	1		1			1		1	1		1			1
	200mm	1	1		1		1	1		1			1				1	1			1
	150mm	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					
	100mm	1	1	1	1			1													
	50mm		1	1	1			1													
Environment			- Oute	_	_		- Jutdoo					Out	door					C	Dutdoo	or	
Brake																					
Shaft for manua	I operation									-									•		
Anti-rod rotation	· · · ·								Z	1	2	2							Δ		
Limit switch for s	stroke adjusting						0		0)	(()	(0		
	Built-in L.S. for positioning						0				((0		
Potentiometer*							0				((0		
Rotary encoder															(0		
End fitting (type U) End fitting (type I)										-									•		
Bellows	•)						0												0		
Clevis*							<u> </u>			-				<i>,</i>					0		
	ng adapter								0))					0		
Trunnion mounting adapter Press contact stopping											<u> </u>		<u> </u>		· `				-		

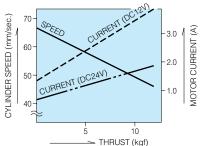
•: Fitted on the standard units O: Multi series available as optional parts *Note: Potentiometer cannot be used with Clevis mounting type

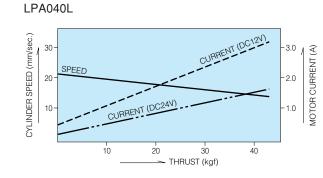
Battery Cylinder

D.C. MOTOR SERIES

FEATURES

- 1. Compact and clean electro-mechanical drive for linear movement.
- 2. No piping for hydraulic fluid or compressed air.
- 3. Maintenance-free.
- 4. Ball type overload clutch is equipped for overload protection.
- 5. Weatherproof for indoor and outdoor operation.
- 6. Press contact stopping is available for LPA010M & LPA040L.

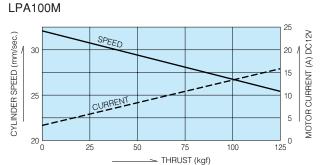

SPECIFICATIONS

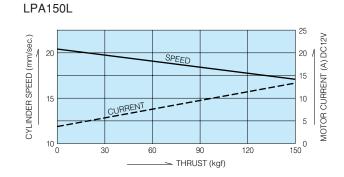

Model No.	Rated Load (kgf)	Stroke (mm)	Speed (mm/sec.)	Voltage	Current (A)
		50			
	10	100	50	DC12V	3.4 (1.7)
LPA010M (V)	10	150	(at full load)	(DC24V)	(at full load)
		200			
		50			
	40	100	15	DC12V	3.0 (1.5)
LPA040L (V)	40	150	(at full load)	(DC24V)	(at full load)
		200			

1. Use the battery cylinder below the rated load and speed in the table.

2. Speed and motor current vary depending upon the load applied.

LPA010M

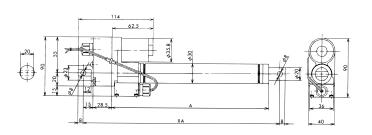




TYPICAL APPLICATIONS

- Agricultural Equipment 1.
- Silage chutes, conveyors, cutter bar control transmission shifters, tractor accessory lifts.
- 2. Industrial Equipment Belt speed and tension controls, flue and draft controls, table lifts,
- hatch covers, ventilator controls. 3. Medical Equipment
- Dental chairs, hospital beds, examination tables, X-ray equipment, invalid lifts, patient handlers.
- 4. Material Handling Equipment Container tippers, dump chute doors, elevators, container positioners, conveyor switching, and trip devices.
- Recreational Equipment 5. Satellite systems, trailer actuators.

Model No.	Rated Load (kgf)	Stroke (mm)	Speed (mm/sec.)	Voltage	Current (A)
		50			
LPA100M	100	100	27	DC12V	13
LPATUUIVI	100	150	(at full load)	(DC24V)	(at full load)
		200			
		50			
LPA150L	150	100	17	DC12V	13
LPA 150L	150	150	(at full load)	(DC24V)	(at full load)
		200			

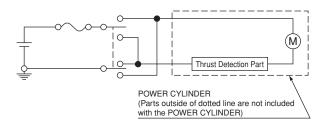


3. The battery cylinder should be used for intermittent operation only. For applications where frequent and continuous operation is required, please consult Tsubaki.

DIMENSIONS/ENGINEERING INFORMATION

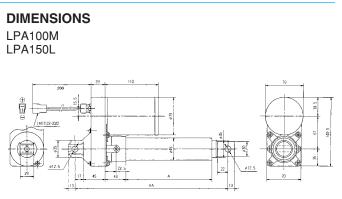
DIMENSIONS

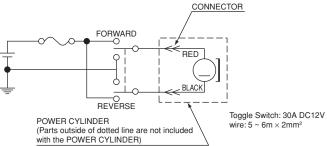
LPA010M LPA040L


Model No.		Dimen	sions (mm)		Approx. Weight
woder no.	Stroke (mm)	А	XA MIN.	XA MAX.	(kg)
LPA010M0.5 (V)	50	129.5	190	240	0.8
LPA040L0.5 (V)	50	123.5	130	240	0.0
LPA010M1.0 (V)	100	179.5	240	340	0.9
LPA040L1.0 (V)	100	173.5	240	540	0.3
LPA010M1.5 (V)	150	229.5	290	440	1.0
LPA040L1.5 (V)	150	223.5	230	440	1.0
LPA010M2.0 (V)	200	279.5	340	540	1.1
LPA040L2.0 (V)	200	219.5	040	540	1.1

ENGINEERING INFORMATION

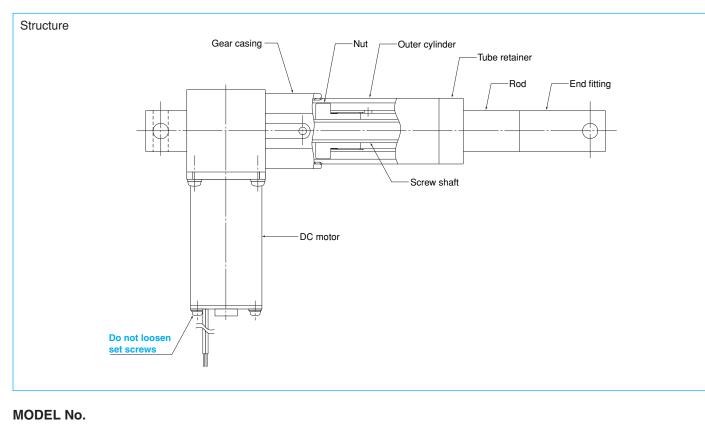
(1) Wiring

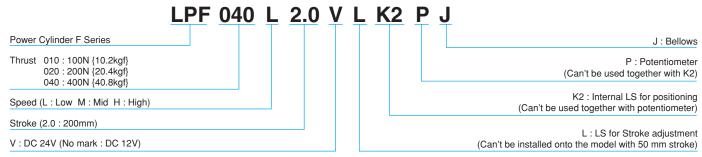

For normal inching operation, please refer to the circuit below;


(2) Installation

When installing, don't apply radial force to the Power Cylinder rod or external forces other than thrust force.

Model No.	Stroke (mm)		Dimensions (mm)	Approx. Weight
Model No.	Stioke (min)	А	XA MIN.	XA MAX.	(kg)
LPA100M0.5	50	77	205	255	3.6
LPA150L0.5	50		200	200	0.0
LPA100M1.0	100	127	255	355	3.9
LPA150L1.0	100	127	200	555	0.0
LPA100M1.5	150	177	305	455	4.2
LPA150L1.5	150	177	505	400	4.2
LPA100M2.0	200	227	355	555	4.5
LPA150L2.0	200	221	555	555	4.0


LPA100M LPA150L

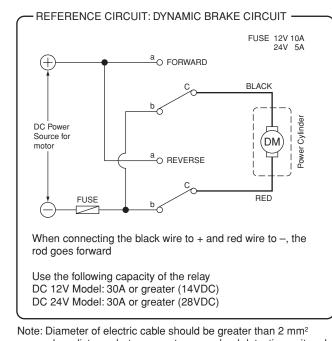


F Series

FEATURES

- 1. Compact design with right angled connection between motor and actuator.
- 2. Right angled two-way clevis holes make four position of mounting.
- 3. Press stopping is available with overload detecting unit (Option).
- 4. Both DC (12V or 24V) and AC (100V or 200V with AC adapter) are applicable for power source.
- 5. Variety of options are available such as stroke adjustment external LS, bellows, position detecting unit. AC adapter, overload detecting unit and so on.

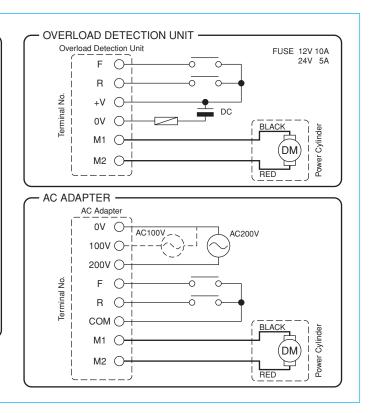
STANDARD SPECIFICATIONS


Mod	el No.	Rated	Thrust	Stroke	Speed	Voltage	Rated load current	Locked current
IVIOU		Ν	{kgf}	mm	mm/s	V	А	А
LPF010H0.5	LPF010H0.5 V			50				
LPF010H1.0	LPF010H1.0 V			100			3.2	16.7
LPF010H1.5	LPF010H1.5 V	100	10.2	150	54			
LPF010H2.0	LPF010H2.0 V			200			(1.6)	(7.5)
LPF010H3.0	LPF010H3.0 V			300		DC12		
LPF020M0.5	LPF020M0.5 V			50		DOIL		
LPF020M1.0	LPF020M1.0 V			100			3.2	16.7
LPF020M1.5	LPF020M1.5 V	200	20.4	150	24	or	(1.0)	(7.5)
LPF020M2.0	LPF020M2.0 V			200			(1.6)	(7.5)
LPF020M3.0	LPF020M3.0 V			300				
LPF040L0.5	LPF040L0.5 V			50		DC24		
LPF040L1.0	LPF040L1.0 V			100			3.7	16.7
LPF040L1.5	LPF040L1.5 V	400	40.8	150	15		-	-
LPF040L2.0	LPF040L2.0 V			200			(1.8)	(7.5)
LPF040L3.0	LPF040L3.0 V			300				

Note: 1. Model No. should be selected in consideration of locked current. 2. Figures in () are shown as current for DC 24V models.

MOTOR SPECIFICATIONS

N N.	Voltage	Output	Dating		
Model No.	V	W	Rating		
LPF010H	12				
LPF010H V	24				
LPF020M	12 29		5 Minutes		
LPF020M V	24	29	5 Minutes		
LPF040L	12				
LPF040L V	24				


WIRING DIAGRAMS

when distance between motor ~ overload detecting unit and DC power source is within 3 m.

AMBIENT CONDITIONS

	Туре	Outdoor type
	Ambient temp.	−15°C ~ 40°C
ere	Humidity	Less than 85%
Atmosphere	Shock	Less than 1G
Atm	Altitude	Less than 1000m
	Environment	Outdoor use

SELECTION AND INSTRUCTION FOR OPERATION

mm/sec

cycle/min

SELECTION

The following information is necessary for the selection of F series.

- 1. Application
- 2. Required Thrust or Load N (kgf) mm
- 3. Stroke
- 4. Speed
- 5. Frequency of operation 6. Voltage of power source

SELECTION PROCEDURE

1. Selection of Model No.

Select the suitable model number from the chart of standard specification (page 8) based on Thrust (N or kgf), Stroke (mm), Speed (mm/sec.) and so on

2. Confirmation of special features

Frequency of operation must be kept at the following: Allowable number of motor starts : 2 times/min. or less : 25% ED or less Allowable working time rate

INSTRUCTION FOR OPERATION

1. Performance

Operative speed and motor current varies depending on actual load applied to the rod. Refer to the characteristics graph at page 10 for the detail.

F series Power Cylinders cannot be operate in synchronicity due to change of speed by applied load as a characteristic of DC motor. Life is approximately 15,000 times rod's reciprocating motion.

2. Power source

When using AC power source by transformer in stead of DC battery power source, capacity of transformer should be large enough to avoid dropping of voltage. (AC adapter for output voltage DC 24V is available as optional parts.)

3. Voltage

DC 12V type (10 ~ 14V) and DC 24V (20 ~ 28V) are available. Operative speed may change depending on actual voltage.

4. Maintenance

Actuator portion and reducer portion are pre-greased. Greasing is not required.

5. Press stopping operation

Press stopping is available with overload detecting unit. (overload detection unit must be used with Power Cylinder in this case) CAUTION: Press stopping is not available for the standard model because it doesn't have any overload detecting units.

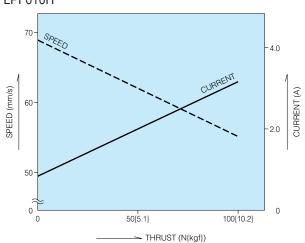
6. Rod rotating prevention

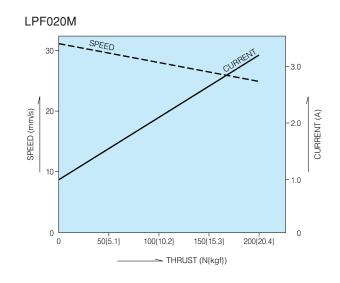
It is necessary to prevent rod rotating because rotating torque as shown below applies to the rod when operating. LPF010H: Max 0.14 Nm LPF020M: Max 0.28 Nm LPF040L: Max 0.55 Nm

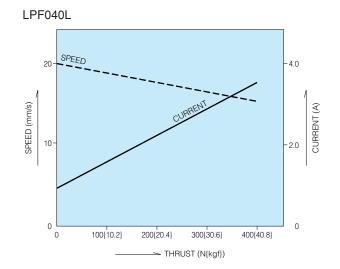
7. Frequency of operation

F series Power Cylinder is designed for low frequency of operation, however it can be also used for inching operation if frequency of operation is less than 10 times/min.

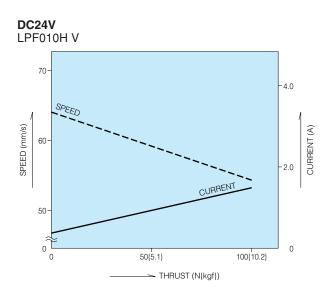
8. Outdoor use

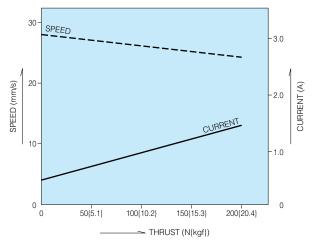

F Series Power Cylinder itself is for outdoor use. Waterproof connector must be prepared and connected to the end of the motor cable.

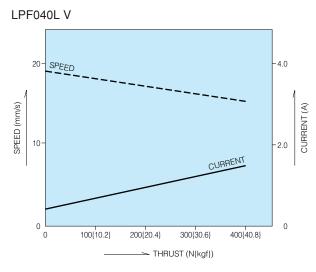

9. Installation


When installing, do not apply radial force to the rod or external forces other than thrust force. Power Cylinder should be connected with connecting pins to the equipment. Both clevis pin and end fitting pin should be also adjusted in phase.

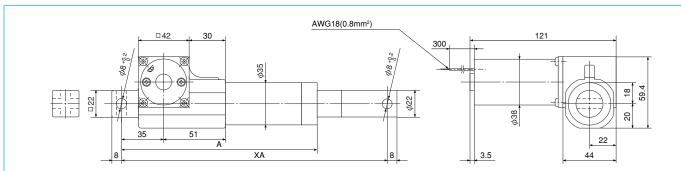
CHARACTERISTICS GRAPH DC12V





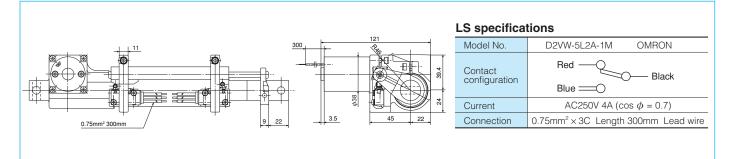

Note: Data in the graphs is based on DC 12V/24V, ambient temp 20°C. Speed and motor current depend on conditions of power source and ambient temp.

F Series

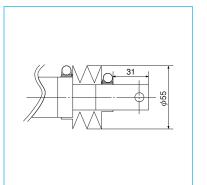


DIMENSIONS

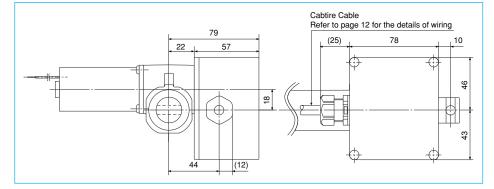
Basic type



		Th	rust	Stroke		Dimensions		Approx.
Mode	el No.		usi	Stroke	A	X	A	weight
		N	{kgf}	mm		MIN.	MAX.	kg
LPF010H0.5	LPF010H0.5 V			50	162	220	270	1.0
LPF010H1.0	LPF010H1.0 V			100	212	270	370	1.2
LPF010H1.5	LPF010H1.5 V	100	10.2	150	262	320	470	1.4
LPF010H2.0	LPF010H2.0 V			200	312	370	570	1.6
LPF010H3.0	LPF010H3.0 V			300	412	480	780	2.0
LPF020M0.5	LPF020M0.5 V			50	162	220	270	1.0
LPF020M1.0	LPF020M1.0 V			100	212	270	370	1.2
LPF020M1.5	LPF020M1.5 V	200	20.4	150	262	320	470	1.4
LPF020M2.0	LPF020M2.0 V			200	312	370	570	1.6
LPF020M3.0	LPF020M3.0 V			300	412	480	780	2.0
LPF040L0.5	LPF040L0.5 V			50	162	220	270	1.0
LPF040L1.0	LPF040L1.0 V			100	212	270	370	1.2
LPF040L1.5	LPF040L1.5 V	400	40.8	150	262	320	470	1.4
LPF040L2.0	LPF040L2.0 V			200	312	370	570	1.6
LPF040L3.0	LPF040L3.0 V			300	412	480	780	2.0

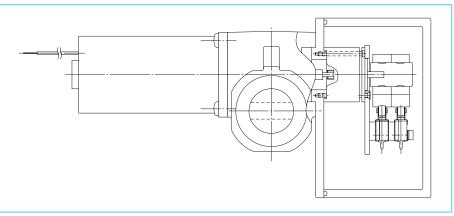

Note: In case of DC 24V, symbol "V" is added to the end of the model number.

WITH LIMIT SWITCH FOR STROKE ADJUSTMENT


Note: Limit switch for stroke adjustment cannot be installed onto the model with 50 mm stroke.

WITH BELLOWS

WITH POSITION DETECTION UNIT



POSITION DETECTING UNIT

INTERNAL STRUCTURE

The following two built-in units are available for position detection.

1. INTERNAL LIMIT SWITCH FOR POSITION DETECTION

Note: Internal LS for position detection cannot be used together with potentiometer and vice versa.

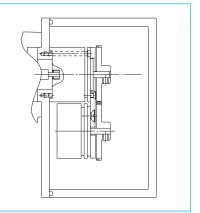
SPECIFICATIONS OF POSITION DETECTING UNIT

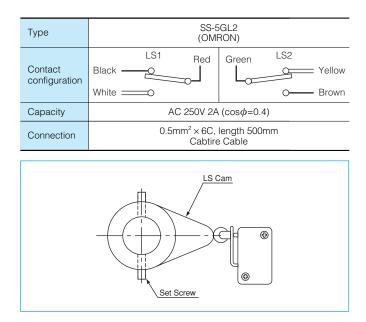
1. INTERNAL LIMIT SWITCH FOR POSITION DETECTION

For space saving or hard environments such as dust, corrosion etc.

Limit Switch Set-Up

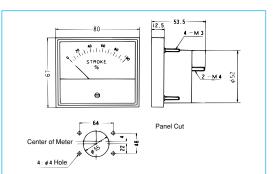
- 1. Operate Power Cylinder to confirm direction of LS cam before installing the Power Cylinder.
- 2. Install the Power Cylinder, then adjust where the position of stroke is to be stopped or detected.
- 3. Rotate LS cam, then fix it at the position where the micro switch works by tightening set screws taking into consideration the coasting distance of the stroke.


2. POTENTIOMETER


Potentiometer is a variable resister to output electrical signals by stroke. Printed circuit board and stroke indication meter may be used together with the potentiometer.

Resister is preset by model of Power Cylinder before delivery. If the actuator rod is rotated before installation, the stroke position will be out of phase with potentiometer. After installation adjust the phase correctly.

2. POTENTIOMETER

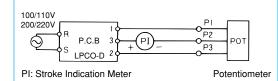

Туре	CP-30 (Kyoei Tsushin Kogyo)
Total resistance	1kΩ
Power rating	0.75W
Insulation rating	AC1000V 1min.
Effective electrical angle	355° ±5°
Effective angle of rotation	360° (Infinite)
Connection	0.5mm ² × 3C, length 500mm Cabtire Cable
BlackO	A Red
White ————— Rod Reverse ←	 ─────→ Rod Forward

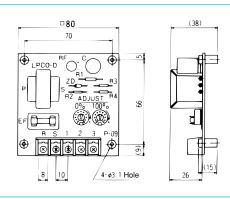
CONTROL OPTIONS

STROKE INDICATION METER

Stroke is indicated by %.

otione is indicated by 76.							
Model No.	RM80B (DC100µA)						
Class	JIS C 1102 2.5 Class						
External appearance	Black plastic						
Scale specification	Full Stroke Indicated by 100%						

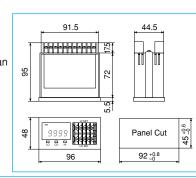


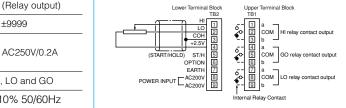

FOR POTENTIOMETER

CIRCUIT BOARD LPCO–D1 (100/110V 50/60Hz) LPCO–D2 (200/220V 50/60Hz) The circuit board transforms output signals of voltage from the potentiometer to current.

To adjust the meter, use the potentiometer on the printed circuit board.

If the meter is required to read 100% at minimum stroke, reverse wire 1 and wire 2.

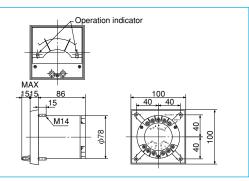




R CONTROLLER

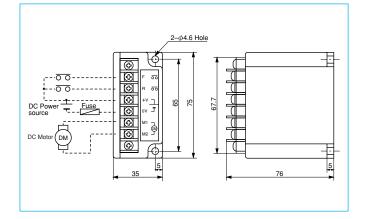
The R Controller digitizes output signals of voltage from the potentiometer for stroke indication or stroke control. Scaling function is available for indicating actual stroke or stroke by %. The R Controller can be connected to the potentiometer directly.

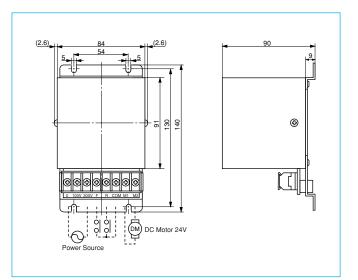
Model No.	RX-5455-NBAS (BURRUF)
Total resistance of input potentiometer	0.8kΩ~12kΩ
Display	4 digits 7 segment LED
External appearance	Black Plastic
Comparative output	HI, LO, GO (Relay output)
Comparative set value	0 – ±9999
Comparative output contact capacity	DC30V/1A AC250V/0.2A
Output contact configuration	1C for H1, LO and GO
Power source	200V AC ±10% 50/60Hz

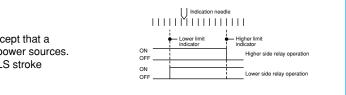


METER RELAY

P.C.B. for the Meter Relay is the same as P.C.B. for Stroke Indication Meter. The Meter Relay controls stroke with built-in control panel. Steel mounting panel is standard. Aluminum mounting panel is also available.

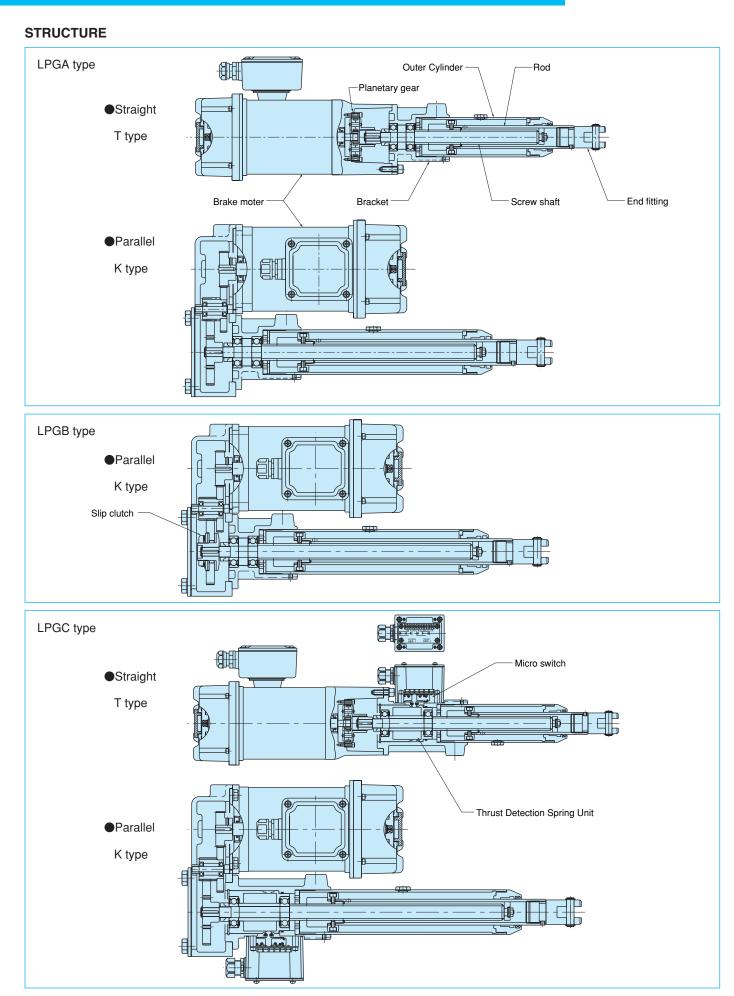

Model No.	NRP-100 (TSURUGA)
Class	JIS C 1102 2.5 Class
External appearance	Black Plastic
Scale specification	100% at full stroke
Power source	AC 100/100, 200/220V 50/60Hz
Input	Max. DC 100µA
Output contact configuration	1C for both High and Low (Refer to page 14)
Contact rating	AC250V3A ($\cos\phi=1$)


RELAY OPERATION


(NORMALLY CLOSED CONTACT) The meter relay's wiring is the same as that of the stroke meter except that a separate power supply is necessary. Please use one of the other power sources. Direct connection of the output contact (normally closed) with the LS stroke adjustment normally closed, contact is simple.

OVERLOAD DETECTION UNIT

AC ADAPTER



Model No.		LPF-K12	LPF-K24		
Applicable	Power Cylinder	LPF010, LPF020, LPF040			
Power volta	ge	10 ~ 14VDC	20 ~ 28VDC		
Rated curre	ent	3.7ADC	1.8ADC		
Overload	Load current	7.0ADC (fixed)	4.0ADC (fixed)		
Protection	Starting time	0.3sec.	(fixed)		
function	Overloading time	0.1sec. or less (fixed)			
Operation s	pecification	Switched on between F and $+$: forward Switched on between R and $+$: reverse Switched on both F $ +$, R $ +$: stop			
Ambient ter	np.	– 15 ~ 40°C			
Ambient hu	midity	45 ~ 85%RH (No condensation)			
Structure		Built in type for control box case: ABS			
Weight		0.2	²kg		

Model No.		LPF-A24			
Applicable I	Power Cylinder	LPF010, LPF020, LPF040			
Applicable I	motor	24VDC 29W			
Power source	ce	100VAC 50/60Hz 200/220VAC 50/60Hz			
Rated curre	nt	1.8ADC			
Overload	Load current	4.0ADC (fixed)			
Protection	Starting time	0.3sec. (fixed)			
function	Overloading time	less than 0.1sec. (fixed)			
Operation s	pecification	Switched on between F and Com : forward Switched on between R and Com : reverse Switched on both F - Com and R - Com : stop			
Ambient ten	np.	−15 ~ 40°C			
Ambient humidity		45 ~ 85%RH (No condensation)			
Structure		Built in type for control box case: SPCC			
Weight		2.5kg			

G Series

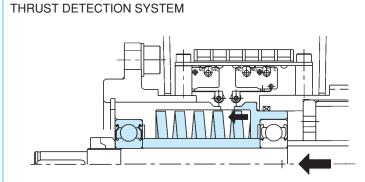
TYPE (OVER LOAD PROTECTION DEVICE) SELECTION

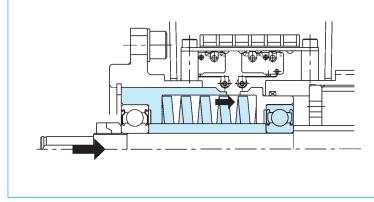
There are 3 types of G series Power Cylinder. Select the type based on your application. Basic performances (Thrust, Speed and Stroke) are the same.

Basic type (LPGA)

This type has no Over Load Protection Device. It only has a brake for the brake motor. Please note that it can be used within their stroke. If you use it over the stroke, it may cause damage. Use LS for stroke control on your equipment or stroke adjusting. The LS unit is optional when you choose an LPGA type. We recommend using a Shock Relay or Shock Monitor for Overload Protection Device.

Slip Clutch type (LPGB). Only Parallel type is available


The internal slip clutch is activated as Overload Protection Device when the thrust load exceeds pre-set thrust. However the slip clutch will wear quickly through continuous slipping and smooth operation may not be possible. Therefore we recommend using it with a Shock Relay.


Thrust Detection Spring Unit type (LPGC)

The LPGC type features an internal thrust detection system that combines pressurizing disk springs with a micro switch. This system will operate effectively in cases shown below.

- 1. Press stopping and stopping by own motor power at min/max stroke end.
- 2. To require electrical signal when overload working.
- 3. Working of overload from load side during stopping.

When shock load working, the spring unit can absorb it.

INSTRUCTIONS

1. When using a rotary encoder or potentiometer. LPGC type Power Cylinder uses a spring unit. Therefore, electrical signal of rotary encoder or potentiometer will have some lag due to bending of spring unit when the spring unit is operating. LPGB type Power Cylinder can use rotary encoder or potentiometer without any lag when the slip clutch is operating. LPGC type Power Cylinder can use them when the spring unit does not operate.

Compression Load (Extension)

- Overload during extension
- Internal stopping at the forward stroke end
- Compression is required after stopping

Tension Load (Retraction)

- Overload during retracting
- Internal stopping at the backward stroke end
- Tension is required after stopping

- 2. Overload working during Power Cylinder stopping. LPGC type Power Cylinder cannot be used if the rod has to stop without any bending.
- 3. When you use LPGC type Power Cylinder for press/pull stopping, the equipment strength required must be more than 250% against the rated thrust of the Power Cylinder.

STANDARD SPECIFICATIONS

							Ту	ре	O' pro	verloa otectic	d in			Op	tion		
Model	Speed	Thrust N { kgf }	Speed mm/sec. 50/60Hz	Motor kw	Rod Travel per manual operated shaft revolution mm	Stroke mm	Straight	Parallel	None	Slip clutch	Thrust detection spring unit	Bellows	LS for stroke adjustment	Position sensor unit	I Type end fitting	Clevis adaptor	Rod anti-rotation protection
LPGA070	L		25/30	0.1	1	100				*1				*1		*1	*2
LPGB070	М	700	75/90	0.2	3	100	0	0	0	0	0	0	0	0	0	0	0
LPGC070	Н	{ 71.4 }	100/120	0.4	4	200	0					0		0	0	0	
LFGC070	U		200/240	0.4	8	000					O *3						
LPGA100	L		25/30	0.1	1	300				*1				*1		*1	*2
LPGA100	М	1.00k	75/90	0.2	3	400	0	0	0	0	0	0	0	0	0	0	0
LPGB100 LPGC100	Н	{ 102 }	100/120	0.4	4	500	0					0		0	0	0	
LPGC 100	U		200/240	0.4	8	500					O *3						
LPGA150	L	1.50k	25/30	0.2	1	600				*1				*1		*1	*2
LPGB150	М	{ 153 }	75/90	0.4	3	800	0	0	0	0	0	0	0	0	0	0	0
LPGC150	Н	{ 100 }	100/120	0.4	4	000											
LPGA300	L	3.00k	25/30	0.4	1	1000				*1				*1		*1	*2
LPGB300	М		50/60	0.2	2	1200	0	0	0	0	0	0	0	0	0	0	0
LPGC300	Н	{ 306 }	67/80	0.4	2.67												

AMBIENT CONDITIONS

Model

Outdoor

conditions.

Ambient

temp.

-15°C

40°C

Humidity

below

85%

2) We recommend the Power Cylinder with bellows for dusty

(Ampere and speed) will change due to grease.

1) In temperatures below zero, the characteristics of Power Cylinder

Shock

below

1G

Note: LPGC070H & LPGC100H : Motor 0.2kw

*1. Only Parallel type is available. *2. LPGC type is not available. *3. Cannot do press stopping.

Altitude

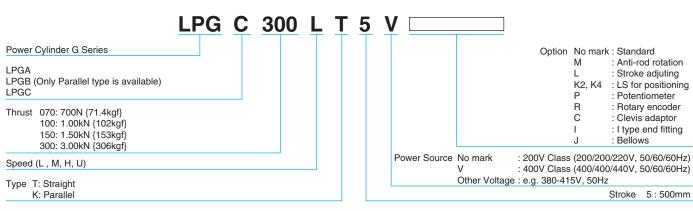
less

1000m

Environment

Outdoor Use

MOTOR SPECIFICATIONS


Туре		Brake motor, Enclosed type, Self cooling type
KW		Refer to the above
Number of Poles		4 poles
Power Source	Voltage	3 [¢] 200V /200V /220V
Fower Source	Frequency	50Hz/ 60Hz/ 60Hz
Insulation class		E
Rating		30min
Protection		(IP54)

Note: 400/440V and other voltages can be manufactured. Please consult Tsubaki

PAINT

Paint: Munsell 5GY6/0.5 (Olive Gray)

MODEL No.

SELECTION

REQUIRED INFORMATION FOR SELECTION

- 1. Application
- 2. Thrust N{kgf}
- 3. Stroke mm
- 4. Speed mm/s

SELECTION PROCEDURE

- 1. Select the type of Power Cylinder to be used based on the operating environment, load conditions (N{kgf}) and speed (mm/s).
- 2. Based on an application, select straight or parallel type. Also select the Overload protection device and options.
- 3. Confirm that the frequency of operation and working time rate ED is allowable.

Allowable Frequency of Operation & Working time rate ED

Number of Motor Starts	Below 10 time/min
Working Time Rate ED (%ED)	25

Working time rate ED is a rate of working time per 10 minute and to be calculated as below.

Working time rate ED (%) =

Working Time per cycle × 100 (%) Working Time per cycle + stopping time per cycle

ESTIMATE LIFE TIME

Estimated life time of G series Power Cylinder is shown below.

• Based on brake operations: 2 million times (Need brake gap adjusting)

• Based on running distance of cylinder: 25 km

INERTIA LOAD FOR HORIZONTAL APPLICATIONS

Setting load of the overload protection device is from 140% to 200% against rated thrust of cylinder.

When starting with large inertia loads, there is possibility of not smooth operation because over protection device is activated. Refer to the following table for limits. If inertia load is larger than the following table, please use the inverter to start slowly.

Allowable car weight, considering inertia

Model	LPGA070 LPGB070 LPGC070	LPGA100 LPGB100 LPGC100	LPGA150 LPGB150 LPGC150	LPGA300 LPGB300 LPGC300
L	1150	2085	1220	2060
М	170	280	310	1560
Н	130	240	270	790
U	71	102		

BRAKE HOLDING POWER

The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% of the rated torque of the motor.

- 5. Frequency of operation Cycle/min
- 6. Power source Voltage & Hz
- 7. Ambient condition
- 8. Operation hours/day, Operating days/year

Car weight : $m \text{ kg}$ Coefficient of friction : μ Car running resistance : $F = \mu m \leq \text{Rated thrust}$		
	m	
1111111.	$\overline{\mathcal{H}}$	

(kg)

SELECTION 2

Select the type of Power Cylinder to be used based on the following selection criteria.

- 1. Setting Load of Overload protection device
 - Slip Clutch (GB Type) : 150% ~ 200% against rated thrust
 - Thrust detection spring unit (GC Type) : 140% ~ 200% against rated thrust

2. Brake Holding Power

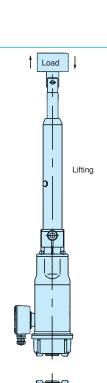
The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% of the rated torque of the motor.

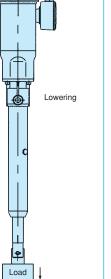
3. Coasting and Stopping Accuracy

The position accuracy of the Power Cylinder varies depending upon speed and load inertia. Accuracy will improve as speed is lowered. Refer to the table shown below, and then set the limit switches taking into consideration expected coasting.

Coasting and Stopping Accuracy Table (Reference value when time lag of relay is 0.03S)

(Dimensions in mm)									
00	eration	L	ifting (In cas	se of 1 and 3	3)	Lowering (In case of 2 and 4)			
	oration	50Hz		60Hz		50Hz		60Hz	
Model		Coasting	Stopping accuracy	Coasting	Stopping accuracy	Coasting	Stopping accuracy	Coasting	Stopping accuracy
LPGA070	L	6.9	±0.4	10.0	±0.5	10.6	±0.4	14.9	±0.5
	М	15.0	±1.1	21.5	±1.3	21.8	±1.2	30.1	±1.4
LPGB070	Н	15.4	±1.4	21.7	±1.7	23.7	±1.5	32.7	±1.8
LPGC070	U	34.2	±2.8	47.9	±3.4	60.6	±3.1	81.2	±3.8
LPGA100	L	6.1	±0.4	9.0	±0.5	10.6	±0.4	14.9	±0.5
	М	13.8	±1.1	19.8	±1.3	22.1	±1.2	30.5	±1.4
LPGB100	Н	14.1	±1.4	19.8	±1.7	23.8	±1.5	32.7	±1.8
LPGC100	U	32.0	±2.8	45.0	±3.4	66.9	±3.1	88.2	±3.8
LPGA150	L	4.6	±0.4	6.6	±0.5	7.1	±0.4	9.8	±0.5
LPGB150	М	10.6	±1.1	14.7	±1.3	15.6	±1.2	21.3	±1.4
LPGC150	Н	13.7	±1.4	19.0	±1.7	21.8	±1.6	30.0	±1.9
LPGA300	L	3.3	±0.4	4.6	±0.5	5.1	±0.4	6.9	±0.5
LPGB300	М	8.6	±0.8	12.4	±0.9	23.2	±0.8	29.4	±1.0
LPGC300	Н	9.4	±1.0	13.1	±1.2	19.0	±1.1	25.0	±1.3


* Values of the above table show parallel type Power Cylinder and the Power Cylinder with slip clutch when their thrust is more than 100 N. Coasting of another type of Power Cylinder will be smaller than the above.

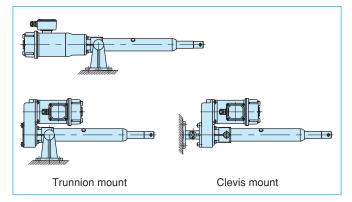

* Coasting Distance:

The amount of stroke traveled from power shut-off and until the unit completely stops.

* Stopping Accuracy:

The position deviation for repeated stops. The above values include ±25% time lag of relay and brake.

Note: In actual operation, rod antirotation provision is required.


INSTALLATION & MAINTENANCE

INSTALLATION POSITION

Power Cylinders may be installed in any position.

INSTALLATION METHOD

Use a trunnion or clevis mount when installing. Install with either a male (I) or female (U) style end fitting. Apply grease to the Trunnion Pin and Bracket hole.

MANUAL CONTROL

To manually adjust the stroke, remove the load from the actuator, release the brake of the brake motor then turn the manually operated shaft of the motor with a handle.

WARNING: Remove any load from the actuator rod before releasing the brake.

Regarding rod travel per manual operated shaft revolution, please refer to the table on page 17.

ANTI ROD ROTATION

- For the thrust of the actuator rod there is a reaction torque. Generally, connection to the driven load prevents rotation.
- If the actuator rod end piece is required to rotate freely or if the actuator rod is used to drive a rolling car or to pull a load with a wire rope or chain, please use option M.

SIDE LOADS ON THE ROD

Install the device so that bending moments are <u>not</u> applied to the actuator rod. Permanent damage to Power Cylinder may result.

SETTING THE EXTERNAL STROKE ADJUST LIMIT SWITCHES

- 1. Set the limit switches taking into consideration expected coasting. (refer to page 19)
- 2. Set the limit switches so that the rod stops within XA dimension.
- When using the Power Cylinder for multiple driving, use the limit switches attached on min/max stroke end of each Power Cylinder.

MAINTENANCE

Lubrication

The Power Cylinder is delivered with grease applied to the screw and can be used without greasing. For maintenance, recommended grease and lubrication cycle is as below.

Table 2 Recommended Grease

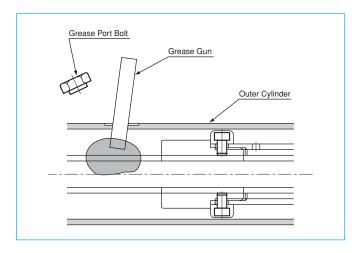
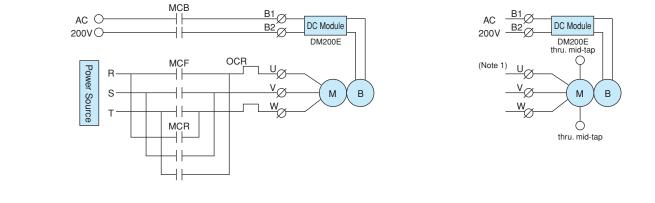

MOBIL	MOBILUX EPNo.2
SHELL	ALVANIA EP GREASE

Table 3 Lubrication Cycle							
Frequency of starts/day	Lubrication cycle						
500~1000	3 to 6 months						
100~500	6 to 12 months						
10~200	12 to 18 months						

Note: The above values are only for reference.


BALL SCREW LUBRICANT REPLACEMENT

Grease must be applied to the ball screw. Grease can be injected through the grease port of the cylinder after extending the actuator rod to the forward stroke end.

WIRING

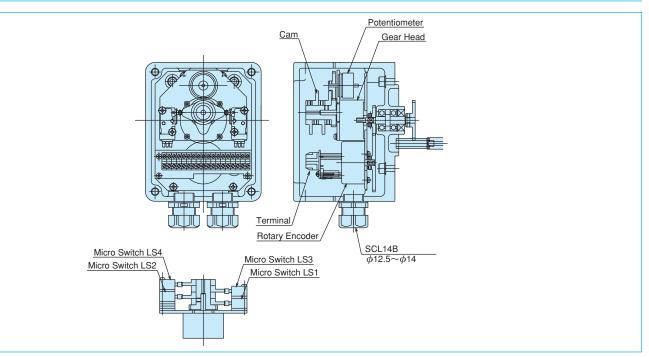
BRAKE MOTOR WIRING (WITH DC BRAKE) Pre-wiring 400V Class 200V Class thru. mid-tap - (†) (†) (†) -⊕ ⊂ ⊕ æ -@ - 🕀 -< 🕀 sæ М S М В ' Source В S ⊕ ≥ ⊕ 15 - 🕀 🔛 🕀 DC Module DC Module DM200E DM200E From neutral point Separate brake power supply 200V Class 400V Class

Note: 1. When you use separate brake power supply operation using 400V class power source, please insulate wiring from the mid-tap. In this case, you have to input 200V power to the DC module. If you do not have a 200V power source, use a transformer to reduce voltage to 200V. Transformer capacity needs more than 90VA (from 0.1kW to 0.4kW) and please check it can be used without the voltage dropping. MCB: AC 250V, 7A minimum

- DC module contains a surge absorption device. Please add protection device for each contact point if necessary.
- 2. Do not insert a relay between the DC module and the brake coil. (Separate brake DC power supply is not available.)

* For more details, please refer to the instruction manual.

LIMIT SWITCHES SPECIFICATIONS

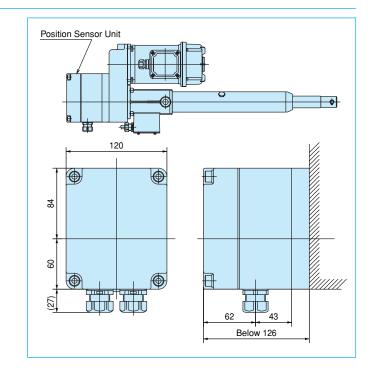

	Stroke adjustment Limit Switch (External)	Thrust detection Limit Switch					
Limit Switch	D4E-1B20N (OMRON)	SS-5GL2D (OMRON)					
Current	AC 250V 3A (cos ϕ = 0.4)	AC 250V 2A (cos ϕ = 0.4)					
		For Forward For Backward					
Contact configuration	NC	Red Green4 Black Yellow White Brown					
Connection	M3 Screw × 3 (ϕ 5.8 ~ ϕ 7.6)	0.5mm ² × 6C Length: 1000mm Cabtire Cable					

POSITION SENSOR UNIT

If position sensing is required, any or all of the following three built-in units may be used only with trunnion mount.

- 1. Internal position sensor limit switch (2 or 4 circuit)
- 2. Potentiometer
- 3. Rotary encoder
- Note: Clevis adapter cannot be attached when a Position Sensor Unit is used.

INTERNAL CONSTRUCTION OF POSITION SENSOR UNIT



INTERNAL WIRING OF THE POSITION LIMIT SWITCH UNIT

Use the internal terminal strip for the position sensor limit switch, potentiometer and rotary encoder wiring. Use shielded wire for the rotary encoder signals.

For Power Cylinder	Ø	Ø	Ø	Ø	\oslash	Ø	Ø	Ø	Ø	Ø	Ø	Ø	\oslash	Ø	Ø	Ø	Ø	Ø
For Customer's wiring	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	\oslash	Ø	Ø	Ø	Ø	Ø
Terminal No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Option		Position Limit Switch (Internal) (K2, K4)								Potentiometer Rotary encoder								
Mark	LS	S1	L	52	L	LS3		LS4 COM		Р			R					
Contact	а	b	а	b	а	b	а	b	С	1	2	3	1	2	Z	5V	0V	
Terminal number	18	17	5	6	16	15	7	8	4	1	2	3	9	10	11	12	13	14

POSITION DETECTION UNIT SPECIFICATIONS

POSITION DETECTION INTERNAL LS

Use a Position detection internal LS when there is no space to install external stroke adjustment LS unit, or you want to use it combined with a Potentiometer and/or a Rotary encoder.

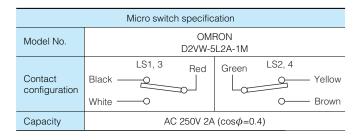
• When the two are attached (K2)...The arrangement is as for micro switches LS1 and LS2 in the drawing on the previous page.

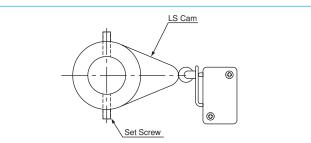
 When four are attached (K4) ……...The arrangement is as for micro switches LS1, LS2, LS3 and LS4

in the drawing on the previous page.

LS settings

To adjust the operating position, first operate the G series Power Cylinder, then adjust the LS cam and make the setting taking into account the amount of coasting. Use a hexagonal wrench (1.5) to loosen the LS cam's two hexagonal socket set screws and to make the adjustment. (See the illustration on the right.) * The limit switches are not set before shipping. Upon delivery,


please set them into suit your equipment.

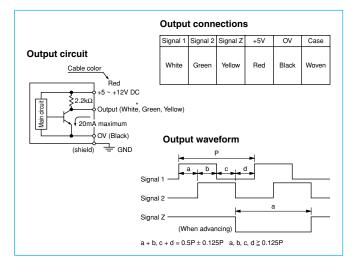

POTENTIOMETER

Potentiometer is a changeable resistor that can output electrical signals following the stroke of the Power Cylinder.

Use it combined with a Printed circuit board and Stroke display meter.

If the actuator rod is rotated before installation, the stroke position will be out of phase with the potentiometer.

Potentiometer specification								
Model No.	CP-30							
Maker	Sakae							
Total resistance	1kΩ							
Power rating	0.75W							
Insulation rating	AC1000V 1min.							
Effective electrical angle	355° ±5°							
Effective angle of rotation	360° Endless							
Black	VVV-0 Red							
White								
Rod Backward +								


ROTARY ENCODER

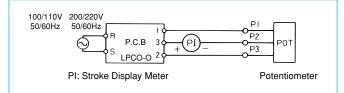
The rotary encoder is ideal for controlling the stroke in conjunction with a programmable controller.

ENCODER SPECIFICATIONS

Output pulse number	40P/	R				
Output wave form	90-degree phase difference, two-p	hase waveform + origin output				
	5V Power Source	"1" 4.5V min.				
Output voltage	SV Power Source	"0" 0.5V max.				
Output voltage	12V Power Source	"1" 11.0V min.				
	12V Power Source	"0" 1.0V max.				
Output resistance	Load resistance 2.2k Ω					
Signal accuracy	Cycle error: less than 0.1 cycles					
Power source	DC 5 to 12V 60mA					
Frequency response	50kHz					
Light source	Light emitting diode					
Light receiver	Phototransistor					
Operating temperature 0°C ~ 60°C						
Storage temperature	–20°C ~ 80°C					
Humidity	Less than 95% relative humidity (RH), (With no condensat					
Vibration	55Hz max. oscillation amplitude of 1.5	omm for 2 hours in direction XYZ.				
Shock	ction 3 times)					

Туре	MES-30-40
Manufacturer	Microtech Laboratory Inc. Japan Barufu Inc.
Output method	Incremental

Please use the limit switches to make the origin setting.
 External loads should not exceed allowable loss P.

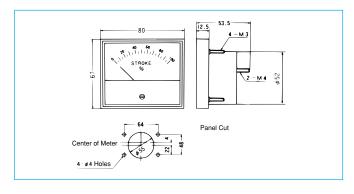

POTENTIO-CONTROL OPTION

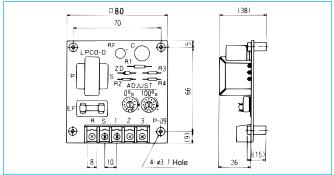
STROKE DISPLAY METER

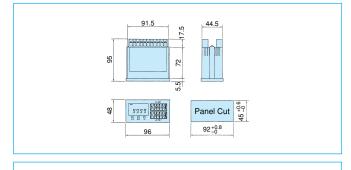
Туре	RM-80B (DC100µA)
Class	JIS C 1102 2.5 class
Appearance	Frame/black
Scale specifications	Full stroke 100% display

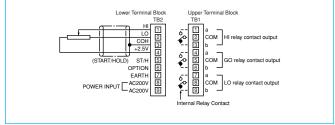
■ PRINTED CIRCUIT BOARD

Please adjust the meter using the ADJUST controls located on the PCB. Do not get + and – confused on the stroke meter. To have the meter display 100% when at it's minimum value, switch terminals 1 and 2 on the PCB.

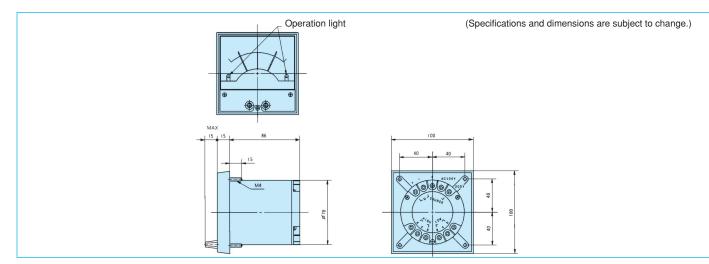

■ R CONTROLLER


The signal from the potentiometer located inside the G series Power Cylinder position detection mechanism is digitized for display and stroke control. An internally mounted scaling mechanism can display the actual stroke and the degree of extension (%). Direct connection of the R controller to the potentiometer is possible.

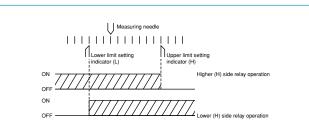

■ METER RELAY


Stroke adjustment can be easily performed from the control panel. (The steel panel attachment is standard. Please indicate if an aluminum panel is desired.)

Note: When using a TC unit, etc. (4 to 20 mA output), please indicate, 'For 4 to 20 mA output.' **G** Series



Meter Relay Specifications							
Model No.	NRP-100 (TSURUGA)						
Level	TISC1102 2.5						
External appearance	Black Plastic						
Scale specification	100% at full stroke						
Power source	AC100/100, 200/220V 50/60Hz						
Input	DC100µA max.						
Output contact configuration	1C for both high and low (refer to page 25)						
Contact rating	AC250V3A ($\cos\phi$ =1)						


The G series Power Cylinder comes equipped with a potentiometer. Use caution when installing, if the screw is turned, stroke and phase settings will be thrown off. Using the limit switches, adjust the minimum and maximum application stroke setting before using the meter relay.

PRINTED CIRCUIT BOARD

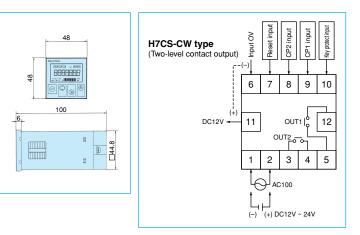
Same as the stroke meter PCB.

RELAY OPERATION (NORMALLY CLOSED CONTACT)

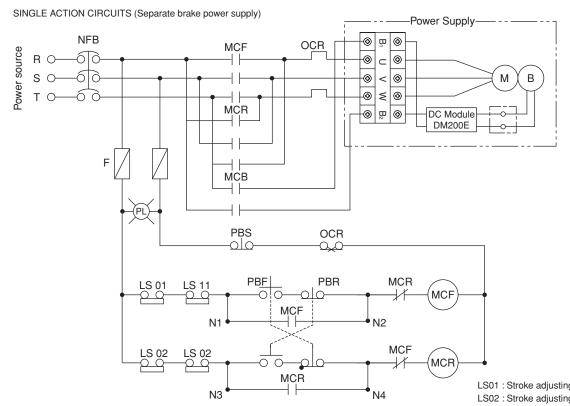
The meter relay's wiring is the same as that of the stroke meter except that a separate power supply is necessary. Please use one of the other power sources. Direct connection of the output contact (normally closed) with the LS stroke adjustment normally closed, contact is simple.

SHOCK RELAY

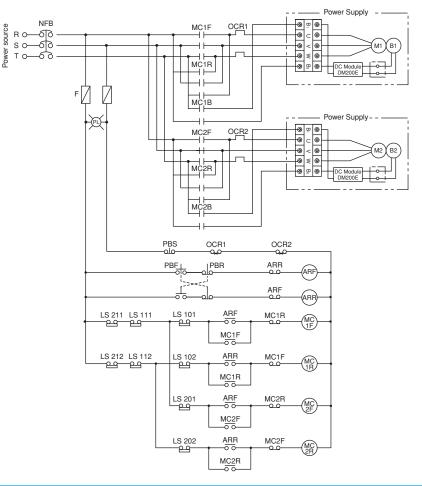
We recommend a Shock Relay as the electric safety device for GB type Power Cylinder.


ROTARY ENCODER OPTIONS

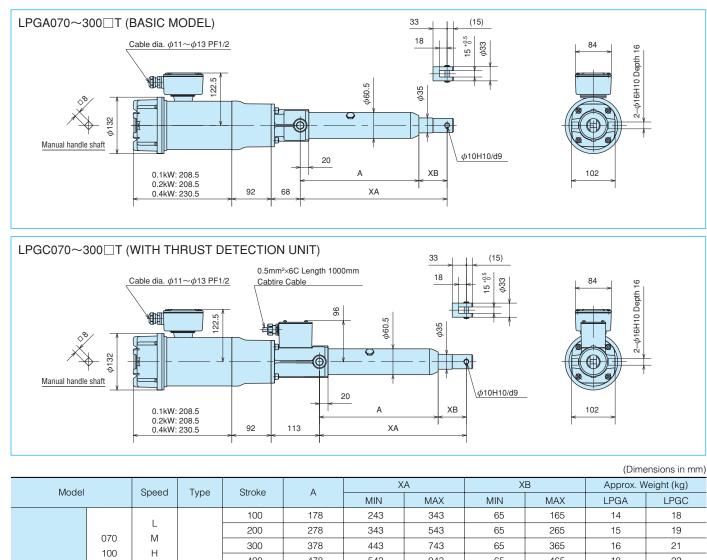
■ PULSE COUNTER


This counter is capable of displaying the pulse count from the rotary encoder in addition to sending relay output. With its prescale function, the actual amount of movement can also be displayed. For stroke control and other uses, please use it in conjunction with a self-protecting circuit. The display, and internal counter data, is backed up with internal batteries so that even when power is cut data is not lost.*

* If there is a power failure, counting is not possible, so do not attempt to move the jack. We recommend that external stroke adjusting limit switches also be used.


Model No.	OMRON H7CS-CW (±1 area type)
Туре	Preset counter
Protective construction	IP54F (panel display section)
Prescale function	Yes (0.001 to 99.999)
Display type	Back-lit, 7-segment LCD
Rated voltage	AC100 to 240V (50/60Hz)
Power consumption	Approx. 6.6VA (at AC 250V, 50Hz)
Control output	Contact: AC 250V 3A ($\cos\phi$ =0.8 to 1)
External power supply	DC12V ±10% 100mA (less than 5% ripple)
Operating temperature	–10 to + 55°C (Not to be frozen)
Storage temperature	–25 to + 65°C (Not to be frozen)
Humidity	35 to 80% RH

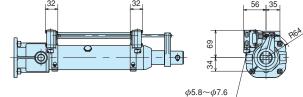
REFERENCE CIRCUITS


TWO MACHINES MULTIPLE DRIVE CIRCUIT (Separate brake power supply)

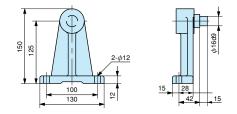
LS01 : Stroke adjusting LS for forward LS02 : Stroke adjusting LS for reverse LS11 : Thrust detection LS for forward LS12 : Thrust detection LS for reverse

LS101	: Stroke	adjusting	LS	for	forward	for	LP1
LS102	: Stroke	adjusting	LS	for	reverse	for	LP1
LS201	: Stroke	adjusting	LS	for	forward	for	LP2
LS201	: Stroke	adjusting	LS	for	reverse	for	LP2
LS111	: Thrust	detection	LS	for	forward	for	LP1
LS112	: Thrust	detection	LS	for	reverse	for	LP1
LS211	: Thrust	detection	LS	for	forward	for	LP2
LS212	: Thrust	detection	LS	for	reverse	for	LP2

DIMENSIONS STRAIGHT TYPE

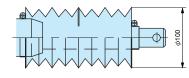


LPGA U Т LPGC М н

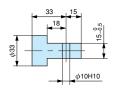

Note: Mechanical Stroke has a room for 3 ~ 8mm at each stroke end against XA dimensions.

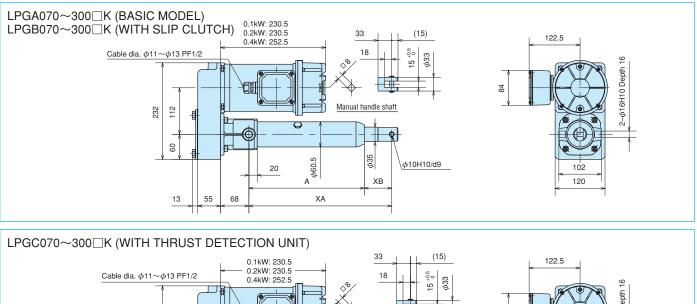

OPTION

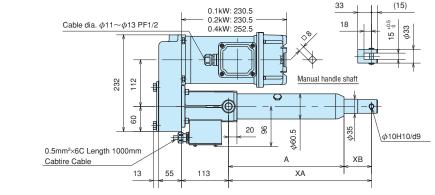
STROKE ADJUSTING LS



TRUNNION MOUNTING ADAPTOR (LPGA300-T)

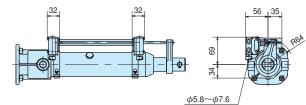






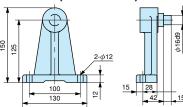
I TYPE END FITTING (LPGA300-I)

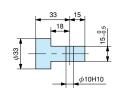
DIMENSIONS PARALLEL TYPE

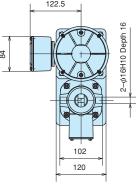


										((Dimensio	ns in mm)
Model		Speed	Туре	Stroke	A	Х	Ά	Х	В	Appr	ox. Weigh	ıt (kg)
Woder		Speed	Type	Sticke	Struke A		MAX	MIN	MAX	LPGA	LPGB	LPGC
		L		100	178	243	343	65	165	18	18	23
	070	М		200	278	343	543	65	265	19	19	24
	100	н		300	378	443	743	65	365	21	21	25
LPGA		U		400	478	543	943	65	465	22	22	26
LPGB			К	500	578	643	1143	65	565	23	23	27
LPGC	150	L		600	678	743	1343	65	665	24	24	28
	300	М		800	878	963	1763	85	885	26	26	31
	300	н		1000	1078	1183	2183	105	1105	28	28	33
				1200	1278	1403	2603	125	1325	31	31	35

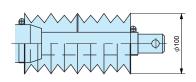
Note: Mechanical Stroke has a room for 3 ~ 8mm at each stroke end against XA dimensions.

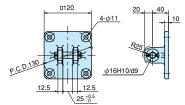

OPTION


STROKE ADJUSTING LS

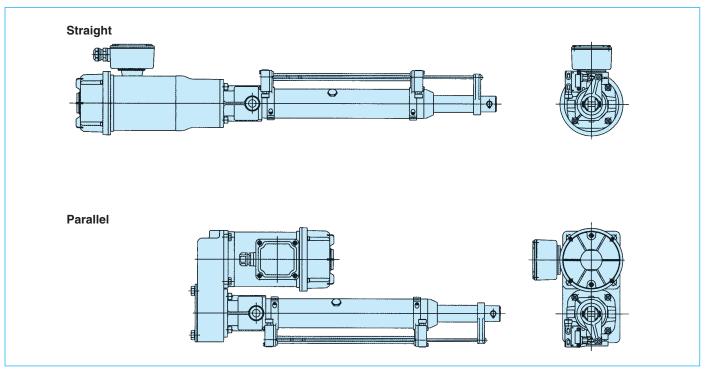


TRUNNION MOUNTING ADAPTOR (LPGA300-T)





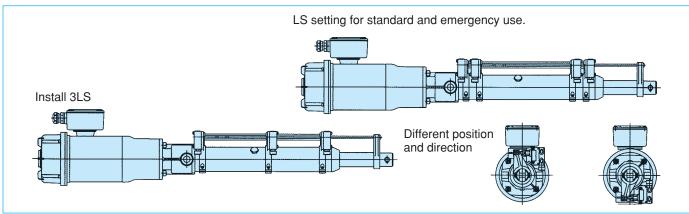
BELLOWS (-J)



CLEVIS MOUNTING ADAPTOR (LPTB500-C)

ADJUSTMENT FOR EXTERNAL LS AND VARIATIONS OF INSTALLATION

1. STANDARD INSTALLATION



2. ADJUSTMENT METHOD

G series Power Cylinder has a room from 3 to 8 mm at both stroke end as mechanical stroke. However it should be used within XA dimensions. Please adjust the limit switches to operate within XA dimensions. If you operate over XA dimensions, The LS striker will come off from LS guide rail. When you adjust limit switches, please adjust and fix each limit switch to avoid lag of relative position between Power Cylinder body and LS guide rail.

- 1. Loosen set screw for LS flange (A) and LS guide rail (B).
- 2. Slide a flange to its required position.
- 3. Tighten the set screw for LS guide rail (B) first.
- 4. Tighten the set screw for LS flange (A) without twist between LS guide rail and LS rod.

3. VARIATION OF INSTALLATION

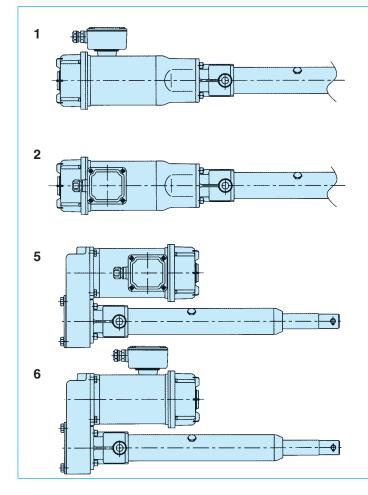
4. INSTALLATION OF EXTERNAL LS

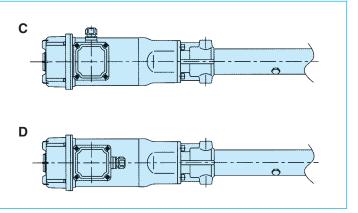
- Tsubaki has an installation manual for changing direction and quantity of LS. Please consult Tsubaki.
- The direction of LS installation is free. Do not allow dust or mud on the LS guide rail for smooth operation of LS striker.

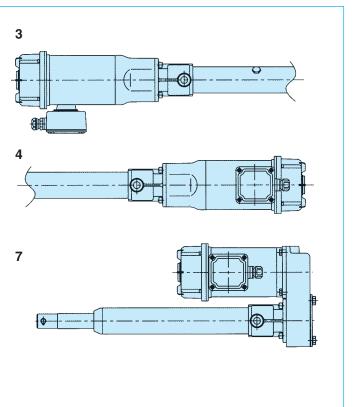

VARIATION OF DIRECTION AND POSITION OF MOTOR TERMINAL BOX

DIRECTION OF MOTOR TERMINAL BOX

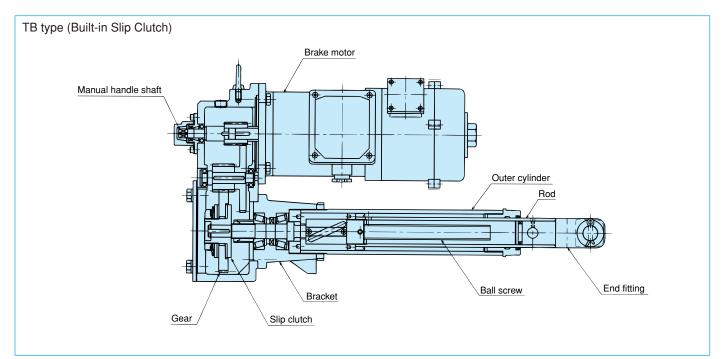
Direction of the motor terminal box can installed as one of the four (4) directions shown below. It can be easily changed by the user.

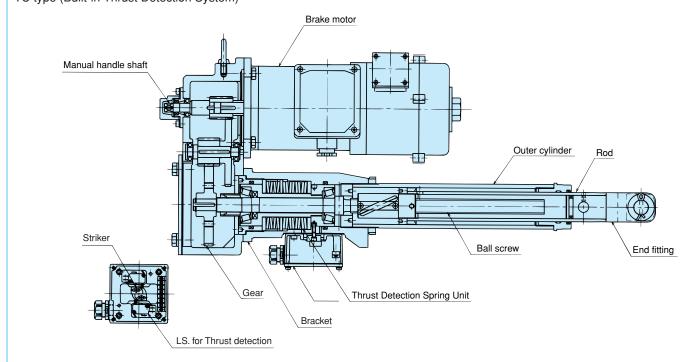

- 1. Remove the lid of the terminal box.
- 2. Remove the 2 screws tightening the terminal.
- 3. Lift the terminal without detaching the wiring to the motor and brake. Then take off the 4 screws fixing the terminal box.
- 4. Rotate the terminal box for the required direction and fix.
- 5. Install terminal.


6. Wire the cable from the power source and replace the lid on the terminal box. When you fix the terminal box, please check that the rubber packing is inserted correctly and firmly tighten the screw.



POSITION OF MOTOR TERMINAL BOX


Position of the motor terminal box can be rotated at 90 degrees intervals as shown below. However, please do not perform this yourself. Please inform Tsubaki of the desired position when ordering.

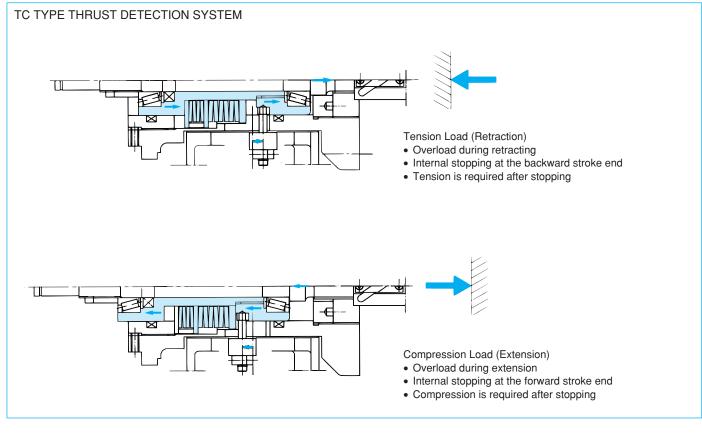


T Series TB type, TC type

MOTOR	-Brake motor, spring close type for outdoor use.
GEAR BOX ——	-Optional remote control devices can be fitted. The manual handle shaft is at the end of the gear box.
CYLINDER	-Ball screw and nut
	LS. rod can be fitted for stroke adjustment. For outdoor use.
TB type	A slip type clutch is built in as safety device against overload. Suitable for remote control.
TC type ———	-A thrust detection spring unit is built in as a safety device for overloading and press contact stopping.

SPECIFICATIONS

TB and TC type have the same basic function (Thrust thrust limiting mechanism.


• **TB type:** Slip clutch type (economical)

An internal slip clutch is built-in as an overload protection device. The slip clutch is activated when the thrust load exceeds the preset level.

The special friction facing provides smooth operation when

overloading or overrunning at the stroke end.

*Tsubaki Shock Relay is recommended when the electrical signal for overloading is required for TB type.

INSTRUCTIONS

 When using a rotary encoder or potentiometer. LPTC type Power Cylinder uses a spring unit. Therefore, electrical signal of rotary encoder or potentiometer will have some lag due to bending of spring unit when the spring unit is operating. LPTB type Power Cylinder can use rotary encoder or potentiometer without any lag when the slip clutch is operating. LPTC type Power Cylinder can use them when the spring unit does not operate.

TB and TC type have the same basic function (Thrust, Speed and Stroke) and have the following features for

• **TC type:** Thrust detection unit type

An internal thrust detection system consisting of two types of disk spring with different spring rate and cam operated limit switches provides the electrical signal to stop the motor when thrust load exceeds the preset level.

(For thrust rating 6 tons and over, only one type of spring is used) This unique system is suitable for the following even for high-speed operation.

- 1) Press (or pull) stopping
- 2) Internal stopping at the mechanical stroke end
- 3) Electrical signal is required when overloading
- 4) In case overload acts to the POWER CYLINDER when stopping (Internal springs absorb the shock load)

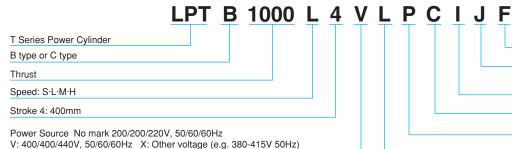
- Overload working during Power Cylinder stopping. LPTC type Power Cylinder cannot be used if the rod has to keep the same position when stopping.
- When you use LPTC type Power Cylinder for press/pull stopping, the equipment strength required must be more than 250% against the rated thrust of the Power Cylinder.

SPECIFICATIONS

STANDARD SPECIFICATIONS

NA 1.1	Th	rust	Speed 50/60Hz	Motor	Stroke
Model	N	{kgf}	(mm/sec.)	(kW)	(mm)
LPTB 250 S L M H	2.45k	{250}	12.5/15 25/30 50/60 100/120	0.1 0.1 0.2 0.4	200~600
LPTB 500 LPTC 500 H	4.90k	{500}	12.5/15 25/30 50/60 100/120	0.1 0.2 0.4 0.75	200~800
LPTB 1000 L LPTC H	9.80k	{1000}	12.5/15 25/30 50/60 100/120	0.2 0.4 0.75 1.5	200~800 *1000
LPTB 2000 LPTC S L M H	19.6k	{2000}	12.5/15 25/30 50/60 75/90	0.4 0.75 1.5 2.2	200~800 *1000 *1200
LPTB 4000 LPTC S L M H	39.2k	{4000}	9/11 25/30 35/42 60/72	0.75 1.5 2.2 3.7	200~1200 *1500
LPTB 6000 LPTC 4000 H	58.8k	{6000}	6.3/7.6 17.5/21 25/30 42/50	0.75 1.5 2.2 3.7	500 1000 *1500
LPTB 8000 H H	78.4k	{8000}	10/12 20/24 30/36 43/52	1.5 2.2 3.7 5.5	500 1000 1500
LPTB 12000 LPTC 12000 H	118k	{12000}	10/12 18.5/22 30/36	2.2 3.7 5.5	500 1000 1500
LPTB 16000 H H	157k	{16000}	14.5/17.5 20/24 31/37	3.7 5.5 7.5	500 1000 1500 2000
LPTB 32000 LPTC S H	314k	{32000}	10/12 15/18 20/24	5.5 7.5 11	500 1000 1500 2000

Note: 1. Separate power supply for brake is recommended for press (pull) stopping. When using the


LPTC-M and LPTC-H, the brake wiring must be separated. 2. Thrust is limited for the stroke of *marked size. Refer to the dimensions table.

MOTOR SPECIFICATIONS

Brake Motor, Enclosed type, Self-cooling type						
4P 200V/200V/220V 50/60/60Hz						
Insulation class E, 30 min. rating for use (IP54)						
Paint: Munsell 5GY6/0 5						

Paint:	Munsell	5GY6/0.5
--------	---------	----------

MODEL No.

Brake

- 0.1 ~ 0.4 kW Motor
- DC Brake
- Separate power supply is available.
- AC 200V is needed for DC Module input

• 0.75 ~ 11 kW motor

- 3 phase AC Brake
- Separate power supply is available
- · Same voltage as motor for AC Brake input

SELECTION PROCEDURE

Application data:

- 1. Power Cylinder type being considered and method of operation
- 2. Thrust and inertia load
- 3. Stroke
- Speed 4.
- 5. Frequency of use (times/minute)

TYPE SELECTION

· Select the type of cylinder to be used based on the operating environment, load condition and the following selection criteria.

SELECTION CRITERIA: TB and TC Power Cylinders have the same basic features; thrust, speed, stroke, load, and integral motor.

The **TB** type is an economical, light weight, positive displacement linear actuator with slip clutch safety protection. This actuator should be considered when coupled with optional position feedback if position accuracy is critical.

The TC type provides thrust detection in tension and compression of the Power Cylinder at 150 ~ 200% of rated load without damage to the Power Cylinder (providing that power source is coupled to thrust detection circuit). The unique thrust detection mechanism employed also provides for moderate shock loading of the unit without damage. This actuator should be considered for applications that may see shock loads, require electronic overload signal, or when press/pull stopping is required. (See Table 1).

Table 1 (For high frequency use of thrust detection unit)

TYPE	LPT	LPTC6			
SPEED	S, L	S, L			
TOTAL STOP CYCLES (× 10 ⁴)	30	10	5	10	

Note: 1. When press (or pull) stopping is being used. It is recommended that you wiring for the brake. (If high or medium speeds are being used, the wiring must be made separately)

2. If the values in Table 1 will be exceeded, we recommend that stopping be initiated using external limit switches.

3. When press (or pull) stopping are required, please ensure that the strength of the equipment being used with the power cylinder exceeds 250% of the maximum thrust produced.

MODEL SELECTION

- 1. Calculate annual running distance. Annual Running Distance (km) =
 - Actual Load Stroke (m) × Cycles/Day × **Operating Days/Year**
- 2. Choose a service factor based on the Power Cylinder, load characteristics and the annual running distance of the Power Cylinder
- 3. Multiply the thrust and the load service factors.
- 4. Using the compensated thrust, stroke, speed and number of cycles, select the appropriate model for your application from the standard models.

Table 2 Service Factor

		Thrust (kgf)		Annual running distance (km)				
		~LP16000	~50 km	~100 km	~150 km			
Characteristics of the load	Application	LP32000	~25 km	~50 km	~75 km			
Uniform load	Opening/closing for damper, valve, etc.		1.0	1.3	1.5			
Low inertia load			1.0	1.0	1.5			
Medium shock	Opening/closing for hopper gate		1.3	1.7	2.0			
Medium inertia load	Loading/unloading application, lifter, etc.		1.5	1.7	2.0			
Heavy shock/with vibration	Buffer for belt conveyors		1.5	2.0	2.3			
High inertia load	Heavily loaded cars, etc.		1.5	2.0	2.3			

Note: If the running distance exceeds that listed above. Please consult Tsubaki

Ambient Conditions Ambiant tomp 1500 1000

Different position of Motor terminal box/L. S.

P: Potentiometer R: Rotary Encoder

L: LS. for stroke adjusting (2pcs.) L3: LS. for stroke adjusting (3pcs.) K₂, K₄: Ls. for positioning

Bellows

No mark: STD. End Fitting I: I type End Fitting

C: Clevis Adaptor

Ambient temp.	–15°C ~ 40°C
Humidity	Below 85%
Shock	Below 1G
Altitude	Less than 1000 m
Outdoor use	

- 6. Period of use (hours/day) and (days/year)
- 7. Design life (years)
- 8. Load characteristics
- 9. Operating conditions environmental
- 10. Voltage and frequency of the power source

000-LPTC32000			
Μ	Н		
3	1		
use extern	al		

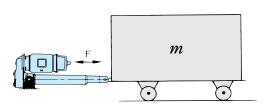
35

CONFIRMATION OF THE SPECIAL FEATURES

- 1. Ensure that the frequency of use is kept below the allowable value listed in Table 3. The allowed operating frequency depends on the starting frequency and the work rate and must be within the range specified in the table below. The duty cycle is calculated with the following formula.
- 2. The accuracy of positioning depends upon the stopping method employed.
- 3. If multiple driving is required, refer to page 30.
- 4. If TC Type is specified be sure total press stops do not exceed values shown in Table 1 page 26.

Working Time per cycle Working time rate ED (%) = Working Time per cycle + stopping time per cycle × 100 (%)

Table 3 Allowable Frequency of Operation


		LPTB · LPTC										
Model	250S 250L 500S	250M 500L 1000S	250H 500M 1000L 2000S	500H 1000M 2000L 4000S 6000S	1000H 2000M 4000L 6000L 8000S	2000H 4000M 6000M 8000L 12000L	4000H 6000H 8000M 12000M 16000L	8000H 12000M 16000M 32000L	16000H 32000M	32000H		
Number of motor starts (times/min.)	5	5	5	4	4	4	4	3	3	2		
Working time rate ED (%)		less than 25%										

Note: The operating frequency is set by the motor temperature limit not the Power Cylinder. Consult factory if number of starts is greater than listed above.

INERTIA LOAD FOR HORIZONTAL APPLICATIONS

Setting load of the overload protection device is from 150% to 200% against rated thrust of cylinder.

When starting with large inertia loads, there is possibility of not smooth operation because over protection device is activated. Refer to Table 4 for the limits. Slow Speed Range Power Cylinders are not limited by inertia.

* The internal thrust detection mechanisms are not user adjustable and may vary ±15%.

> Car weight : m Coefficient of friction : µ *Car running resistance* : $F = \mu m \leq Rated Thrust$

Table 4 Allowable car weight, considering inertia

Model	LPTB LPTC : 250		i0	LPTB LPTC ^{: 500}		LPTB LPTC : 1000		LPTB LPTC : 2000		00	LPTB LPTC : 4000		000		
	L	М	Н	L	М	н	L	М	Н	L	Μ	Н	L	M	Н
Allowable load/kg	4300	1500	850	5500	2650	950	10000	3200	2200	12300	8400	7100	31800	26000	16800
Model	LPTB LPTC : 6000			PTB PTC : 80	00		PTB PTC : 12	000		PTB PTC : 16	000		PTB PTC ^{: 32}	2000	
	L	М	Н	L	М	н	L	М	Н	L	М	Н	L	М	Н
Allowable load/kg \times 10 ³	73	60	39	106	69	86	271	158	200	274	344	189	368	761	860

Note: In case of speed "S", it is no problem practically because of slow speed.

SELECTION EXAMPLE

The following is an example of the procedure to be followed when selecting a Power Cylinder. Application Data is required before selecting an individual Power Cylinder. Begin the Selection Process by obtaining the information required on page 32. When data is available - follow the selection procedure shown on pages 34 and 35.

APPLICATION DATA

- 1. Type of application: Damper opening/closing (2 mid-point stops, tension and compression press stopping).
- 2. Required Thrust: 1,300 kgf.
- 3. Stroke: 600 mm (0.6m)
- 4. Speed: 600 mm in about 20 secs (30 mm/sec).
- 5. Frequency of use: 1 cycle/10 mins. (6 cycles/hr.)
- 6. Operating time: 10 hrs/day, 250 days/year, 5 years
- 7. Design life: 5 years
- 8. Load characteristics: Forward and reverse loading, uniform load
- 9. **Operating conditions:** Outdoors, dusty, temp. range 0°C 35°C
- 10. Power: 220V, 60Hz-3PH

SELECTION OF POWER CYLINDER

1. Type Selection: Press stopping with internal Limit switch. The TC type Power Cylinder meets these requirements.

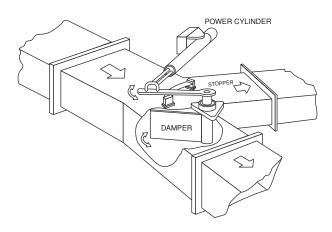
2. Select the Size of Power Cylinder:

a) Determine Service Factor: Calculate annual running distance. <u>2 Strokes</u> $\times \frac{0.6 \text{ Meters}}{6 \text{ Cycles}} \times \frac{10 \text{ Hours}}{10 \text{ Hours}} \times \frac{250 \text{ Days}}{10 \text{ Hours}} = 18 \text{ km}$ Stroke Hour Cycle Day

b) Minimum thrust rating = service factor × required thrust of Power Cylinder Min. Thrust Rating = 1.3×1300 kgf = 1690 kgf

Model Selection : LPTC 2000 L6 K2 J

Two position Limit Switch -bellows (mid-point stops)


3. Confirmation of Choice: Based on allowed operating frequency and total press stops.

Operating Frequency Starting frequency: 2 Times 10 Min.

600mm : Working time rate = 30mm/s $Total \ Press \ Stops = \frac{2 \ Stops}{Cycle} \times -$

 $= 15 \times 10^4 < 30 \times 10^6$

T Series TB type, TC type

Yr

$$\frac{4 \text{ times}}{\text{Min.}}$$

$$\frac{\langle 2}{\text{ec}} = \left[\div (10 \text{ Min} \times 60 \text{ Sec/Min}) \right] \times 100\% = 6.7\% < 25\%$$

$$\frac{6 \text{ Cycles}}{\text{Hour}} \times \frac{10 \text{ Hours}}{\text{Day}} \times \frac{250 \text{ Days}}{\text{Year}} \times 5 \text{ Years}$$

BRAKE HOLDING POWER

The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% of the rated torque of the motor.

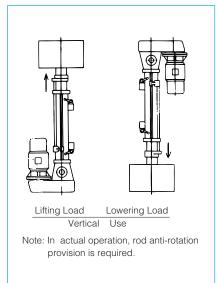
Caution: Overload of TB Power Cylinder will result in loss of brake - unit may free-fall.

BRAKE STOPPING

Using either limit switches or push button control, multiple positioning including mid-point, upper and lower point stopping are possible. Stopping accuracy and coasting distance depend upon the load size and drive speed. When accurate positioning is required, it is recommended that either low operating speed be used or that the brake be wired separately from the motor. When setting the limit switches, please consider the over travel of the rod. (see Table 5)

COASTING AND STOPPING ACCURACY

The following chart provides coasting and stopping data for the T-Series at full load.


A: Coasting Distance in mm:

- The amount of stroke traveled between the power shut-off and until the unit completely stops.
- B: Stopping Accuracy in mm:

The position deviation for repeated stops.

Table 5 Coasting and Stopping Accuracy Table

	Stan	dard Braki	ing (Pre-wi	ring)	Brake wired separately				
Model	Lift	ing	Lowe	ering	Lift	ing	Lowe	ering	
	А	В	A	В	А	В	А	В	
LPTB 250 L LPTC M	2.2 4.3 6.9	±0.4 ±0.8 ±1.4	3.0 8.5 12.4	±0.6 ±2.1 ±3.2	1.9 3.7 6.0	±0.3 ±0.6 ±1.1	2.7 7.8 11.4	±0.5 ±1.9 ±2.9	
Н	13.7	±2.7	27.3	±7.3	12.5	±2.4	26.1	±6.9	
LPTB 500 L LPTC 500 M H	2.1 3.6 6.5 12.7	±0.4 ±0.7 ±1.3 ±2.7	3.7 6.1 11.4 22.3	±0.9 ±1.6 ±2.9 ±5.9	1.8 3.1 5.9 10.2	±0.3 ±0.6 ±1.2 ±2.0	3.3 5.6 10.8 19.6	±0.8 ±1.4 ±2.7 ±5.2	
LPTB 1000 L LPTC M H	1.7 3.2 6.3 15.5	±0.4 ±0.7 ±1.4 ±3.3	2.8 5.4 10.2 27.6	±0.7 ±1.4 ±2.6 ±7.7	1.5 2.9 5.0 10.4	±0.3 ±0.6 ±1.0 ±2.0	2.5 5.1 8.8 22.1	±0.6 ±1.2 ±2.2 ±6.3	
LPTB 2000 L LPTC 2000 H	1.7 3.2 7.7 13.3	±0.4 ±0.7 ±1.7 ±2.9	2.7 5.0 12.7 22.8	±0.7 ±1.3 ±3.4 ±6.4	1.5 2.5 5.2 8.0	±0.3 ±0.5 ±1.0 ±1.6	2.5 4.2 10.0 17.1	±0.6 ±1.0 ±2.7 ±4.9	
LPTB 4000 L LPTC H	1.2 3.8 6.4 10.9	±0.3 ±0.8 ±1.4 ±2.4	1.6 5.9 9.9 16.9	±0.4 ±1.5 ±2.6 ±4.4	0.9 2.5 3.8 6.6	±0.2 ±0.5 ±0.8 ±1.3	1.3 4.5 7.2 12.3	±0.3 ±1.1 ±1.9 ±3.2	
LPTB 6000 H LPTC H	0.6 2.7 4.5 7.6	±0.2 ±0.6 ±1.0 ±1.7	0.8 4.4 7.4 12.2	±0.2 ±1.2 ±2.0 ±3.2	0.5 1.8 2.7 4.6	±0.1 ±0.4 ±0.5 ±0.9	0.6 3.4 5.5 9.0	±0.1 ±0.9 ±1.5 ±2.4	
LPTB 8000 H LPTC H	1.9 3.6 5.6 8.5	±0.4 ±0.8 ±1.2 ±1.8	2.9 5.8 8.4 12.0	±0.7 ±1.6 ±2.1 ±2.8	1.3 2.2 3.4 5.4	±0.2 ±0.4 ±0.7 ±1.0	2.2 4.3 6.1 8.7	±0.5 ±1.1 ±1.5 ±2.0	
LPTB L LPTC 12000 M H	2.1 3.5 5.7	±0.5 ±0.8 ±1.2	3.0 5.1 8.2	±0.8 ±1.3 ±1.9	1.3 2.1 3.6	±0.2 ±0.4 ±0.7	2.2 3.6 5.9	±0.5 ±0.9 ±1.4	
LPTB 16000 M LPTC H	2.8 4.1 6.1	±0.6 ±0.9 ±1.3	4.0 5.6 11.0	±1.0 ±1.3 ±3.0	1.7 2.6 3.9	±0.3 ±0.5 ±0.7	2.8 4.0 8.6	±0.7 ±0.9 ±2.4	
LPTB 32000 M LPTC H	2.1 3.1 4.3	±0.5 ±0.7 ±0.9	2.8 5.4 6.1	±0.7 ±1.4 ±1.4	1.3 2.0 2.7	±0.3 ±0.4 ±0.5	2.0 4.2 4.4	±0.4 ±1.1 ±1.0	

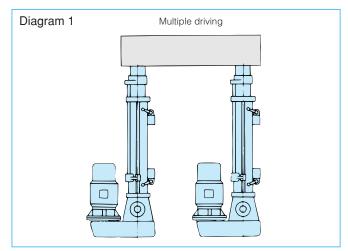
INSTALLATION

MULTIPLE DRIVING

As illustrated in Diagram 1, multiple driving is possible to distribute load in lifting and lowering operations. This arrangement results in low speed variation. When making your selection, please use the formula to the below.

Thrust per cylinder =	Required thrust (kgf)
Thrust per cynnaer =	Number of Power Cylinders × Multi-Factor

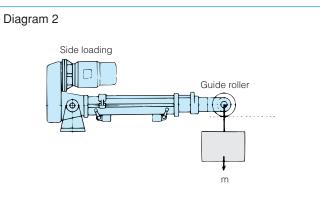
Table 6 Multi-Factor


Power Cylinders being used (units)	2	3	4	5	6
Load Sharing Factor	0.8	0.7	0.6	0.55	0.5

ACCURACY IN MULTIPLE DRIVING

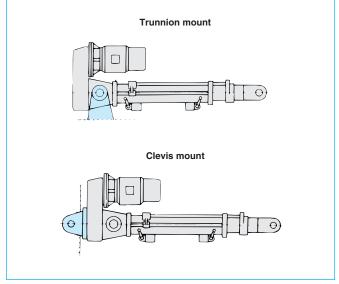
Speed change due to load variation is up to 5% for each Power Cylinder. The possible stopping inaccuracies are listed in Table 5, page 29.

CONTROL


When starting, connect power to all motors at the same time. When stopping, use the limit switches attached to each device. Avoid using one limit switch to control all of the devices as error will accumulate. (see Dia. 1)

SIDE AND ECCENTRIC LOADING

Do not apply eccentric or side loading to the cylinder.


When eccentric or side loading is present, install the device to insure that no direct moment is applied to the cylinder rod.

INSTALLATION POSITION

Power Cylinders may be installed in any position

INSTALLATION METHOD: Use a trunnion or clevis mount when installing. Install with either a male (I) or female (U) style end fitting.

Refer to the available options listed on pages 51.

MANUAL CONTROL

To manually adjust the stroke, **remove the load from the actuator**, release the brake of the brake motor then turn the shaft of the motor pinion on the gear box with a wrench or a socket wrench. WARNING: Remove any load from the actuator rod before releasing the brake.

ROD ANTI ROTATION

- Accompanying the thrust of the actuator rod there is a reaction torque. Generally, connection to the driven load prevents rotation.
- If the actuator rod end piece is required to rotate freely or if the actuator rod is used to drive a rolling car or to pull a load with a wire rope or chain please contact Tsubaki.

SIDE LOADS ON THE ROD

• Install the device so that bending moments are <u>not</u> applied to the actuator rod. Permanent damage to the Power Cylinder may result.

SETTING THE EXTERNAL STROKE ADJUSTMENT LIMIT SWITCHES

- Refer to Table 5 page 37, then set the limit switches based on the expected coasting.
- When the full nominal stroke is to be used, set the limit switches so that stopping occurs within the XA dimension limit taking in to consideration coasting (XA dimension see pages 47-50).
- When multiple cylinders are to be used for driving, use limit switches on each cylinder to control the upper and lower stroke limits.

39

MAINTENANCE

BALL SCREW LUBRICANT REPLACEMENT

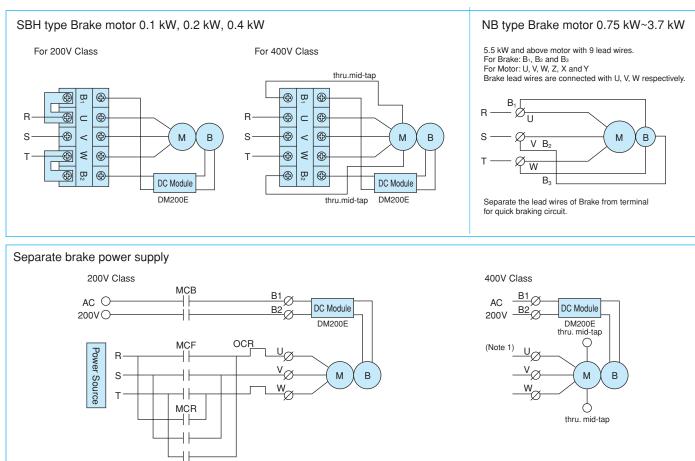
Grease must be applied to ball screw. Grease can be injected through the grease port of the cylinder after extending the actuator rod to the forward stroke end.

Recommended Grease

	Ball Screw	SHELL	SHELL ALVANIA EP No. 2	
		MOBIL	MOBILUX EP No. 2	

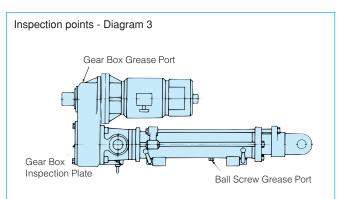
Lubrication Cycle for Ball Screw

Frequency of starts/day	Lubrication cycle		
500~1000	3 to 6 months		
100~500	6 to 12 months		
10~100	12 to 18 months		


GEAR BOX LUBRICATION

The gears and bearing of the speed reducer are lubricated with grease inside the casing.

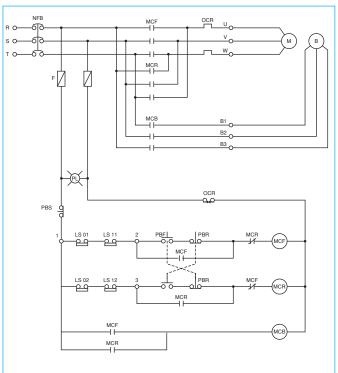
It is unnecessary to apply lubricant more than once a year. If the power cylinder is operated constantly or left unused for long periods of time, the grease condition should be checked.

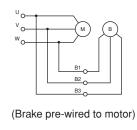

WIRING

BRAKE MOTOR WIRING (Pre-wiring)

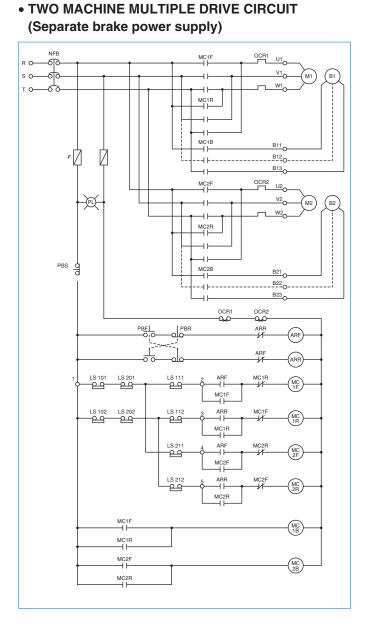
Recommended Grease

Coor Dov	SHELL	SHELL ALVANIA EP No. 1
Gear Box	MOBIL	MOBILUX EP No. 1



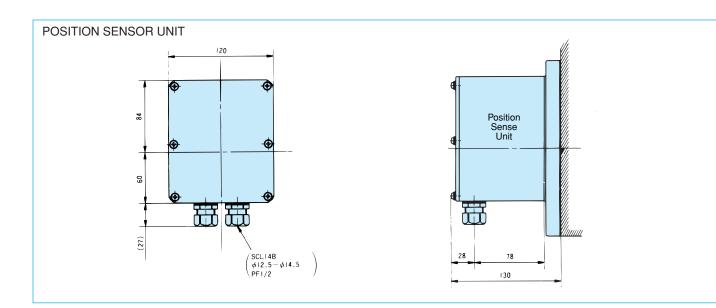

LIMIT SWITCHES SPECIFICATIONS

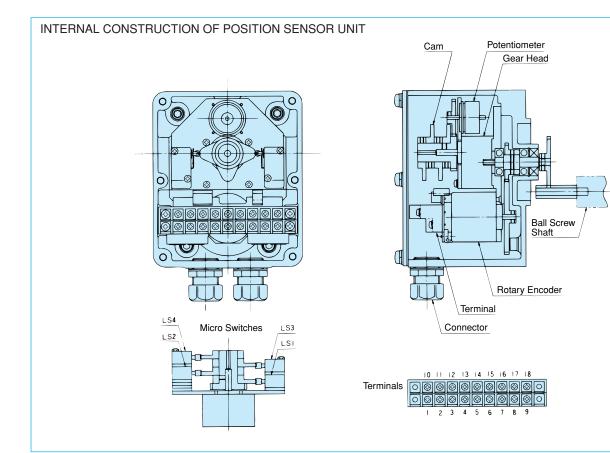
Stroke adjustment Limit Switch (External)		Thrust detection Limit Switch			
Power Cylinder All Sizes		LPTC 250 ~ LPTC 32000			
Limit Switch	WLCA 2 (OMRON)	V-165-1AR5 (O	MRON)		
Current	AC 250V 10A ($\cos \phi = 0.4$)	AC 250V 10A (co	sφ=0.4)		
		Compression-Forward	Tension-Reverse		
Contact configuration	NC 1	Red3 Gree Black $-\emptyset - 0$ White $-\emptyset - 0$ 2	een4 		
Connection SCS-10B (<i>\phi</i> 8.5 ~ <i>\phi</i> 10.5) PF1/2		SCL-14A (Ø10.5 ~ 0			


REFERENCE CIRCUITS (For the motor 0.75kw and bigger)

• SINGLE ACTION CIRCUITS (Separate brake power supply)

Note: Please refer to the page 26 for the motor 0.4kw and smaller.




POSITION CONTROL

POSITION SENSOR UNIT

If position sensing is required, any or all of the following three built-in units may be used only with trunnion mount.

- 1. Internal position sensor limit switch (2 or 4 circuit)
- 2. Potentiometer
- 3. Rotary encoder
- NOTE: Clevis adapter can not be attached when a Position Sensor Unit is used

LIMIT SWITCHES

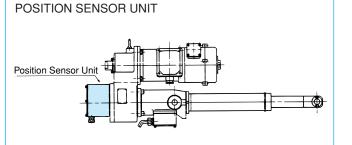
- Two limit switches K2
- Four limit switches K4
- Operating examples of Limit Switch application

К2		External press stop, position s Fixed position stopping (retrac Fixed position stopping at both Press stopping at both ends, p
K4	LS3 LSF LS2 LS4 LS3 LSF LS2 LS4 LS3 LSF LS2 LS2 LS4 LS3 LSF	Fixed mid-position stopping, e (extension) Fixed position stopping (retrac Fixed mid-position stopping, e both directions

LIMIT SWITCH SET-UP

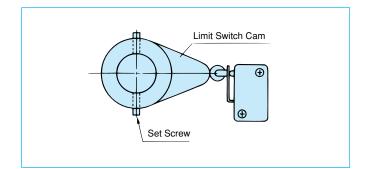
To adjust the working position of the power cylinder, adjust the cam that controls the limit switch. Adjust it by loosening the two set screws shown in the diagram, and rotate to desired limit setting. Tighten set screws.

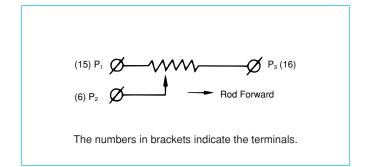
INTERNAL POSITION SENSOR LIMIT SWITCH


Туре	P2VW-5L2A-1M (OMRON) or equivalent		
Capacity	AC 250V 4A ($\cos \phi = 0.4$)		
Contact configuration			

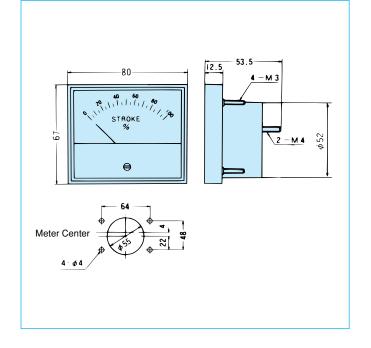
POTENTIOMETER

If the actuator rod is rotated before installation, the stroke position will be out of phase with the potentiometer. After installation, adjust the phase correctly. The stroke may be adjusted with the external limit switches. **CAUTION: Overtravel limit switches required.**


POTENTIOMETER SPECIFICATIONS


Туре	CP-30 or equivalent		
Maker	Sakae		
Total resistance	1 K OHM		
Power rating	0.75 W		
Insulation rating	AC 1000V (1 min.)		
Effective electrical angle	355°		
Effective angle of rotation	360° (Infinite)		

T Series TB type, TC type


n sensing (extension) raction)	
oth ends	
s, position sensing	
, external stopping, position sensing	
raction)	→ Press stop
, external stopping, position sensing	→● Fixed Position Stopping
	-> Position Sensing

CONTROL OPTIONS

Stroke indication meter

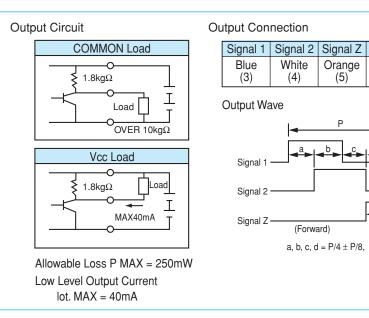
Model number	RM-80B (DC 100µA)
External Apparance	Black plastic
Scale Specification	Full stroke indicated by 100%

To adjust the meter, use the potentiometers on the printed circuit board. If you require the meter to read 100% at minimum stroke, reverse wires 1 and 2.

ROTARY ENCODER

The rotary encoder provides an interface to programmable controllers. It may be used in combination with an AC motor speed controller such as an inverter or servo controller to provide accurate positioning. All Power Cylinders move 1mm/pulse.

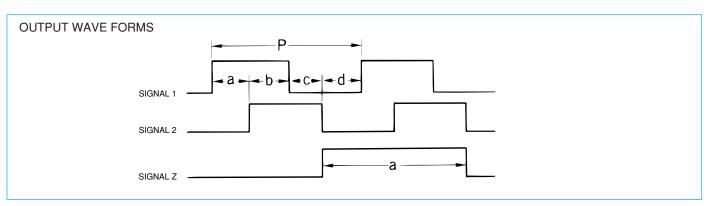
ENCODER SPECIFICATIONS


Output method Output pulse number Output wave form Output voltage Output resistance Signal accuracy Power source Frequency response Light source Light receiver Type Maker

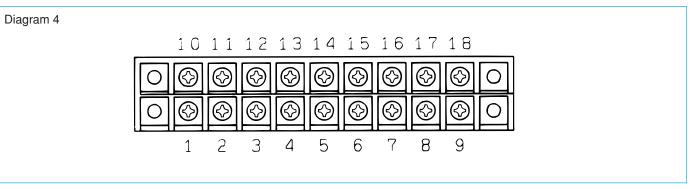
Incremental 60 Pulse/Rev 90° phase difference 12V Power Source: Above 10V 5V Power Source: Above 4V Above $10K\Omega$ ± 1/15P ±1/4P DC 4.75V ~ 13.2V 70mA 20 kHz L.E.D. Phototransister SP-405Z or equivalent Ono

ENVIRONMENTAL CONDITIONS

Operating temperature Storage temperature Humidity Vibration Shock


0°C ~ 50°C −20°C ~ +80°C 85% (40°C 8hrs.) 5G (X, Y, Z direction 2 hrs.) 50G (X, Y, Z direction 3 times, 10G on the shaft)

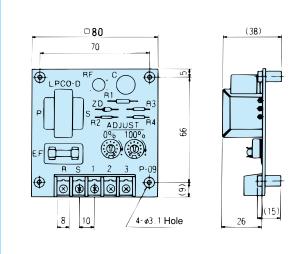
1. () shows Terminal No.


2. Set the origin point by limit switch.

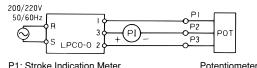
3. Use load below allowable loss P.

INTERNAL WIRING OF THE POSITION LIMIT SWITCH UNIT

Use the internal terminal strip for the position sense limit switch, potentiometer and rotary encoder wiring. Use shielded wire for the rotary encoder signals.

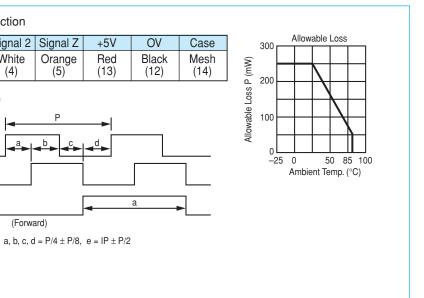

Position Limit Switch (Internal)

L	S1	LS2 LS3		LS4		COM		
a1	b1	a2	b2	a3	b3	a4	b4	С
8	9	1	2	17	18	10	11	7


Rotary Encoder

ϕ V	+5V	Case	Sig 1	Sig 2	Sig Z	
12	13	14	3	4	5	
						_

CIRCUIT BOARD


CIRCUIT BOARD

43

T Series TB type, TC type

Potentiometer					
P1	P2	P3			
15	6	16			

POWER CYLINDER STROKE CONTROL

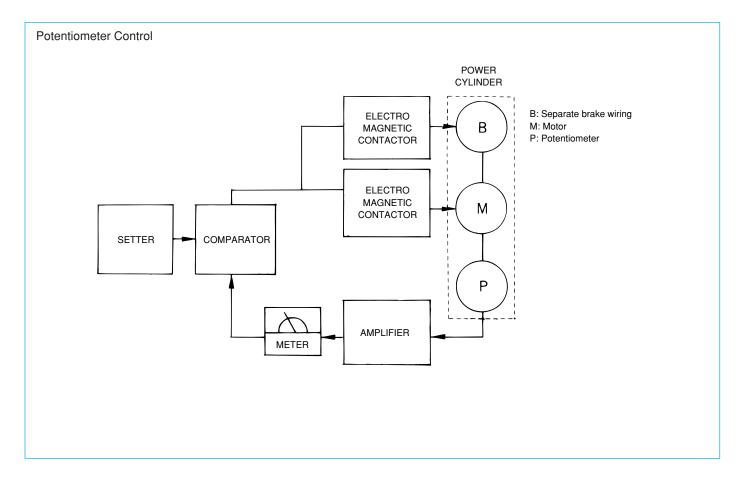
There are a variety of methods by which stroke control may be achieved. The position accuracy of the Power Cylinder varies depending upon stroke, speed, load size, load inertia, direction (vertical, inclined, etc.) and brake wiring. Further, some limitations may result due to the operating conditions. The following is a general guide to the types of control available.

LIMIT SWITCHES

Two types of limit switches are available:

External - stroke adjustment for upper and lower position setting. Internal - Built-in switches control mid-point position setting. Combination of both external and internal may be selected by using K4 switch shown on page 42.

Accuracy will improve as speed is lowered.


PRESS STOPPING

(TC type using thrust sensing limit switches) When using press or pull stopping, mechanical stopping is employed at both ends with a thrust sensing limit switch to control the drive. This mechanical stopping allows good positioning accuracy.

POTENTIOMETER CONTROL

Potentiometer control is used when free adjustment of the stroke is required. In general, as the speed is reduced, accuracy of operation will improve. To protect against stroke overrun, it is recommended that stroke adjustment limit switches be used.

CAUTION: Overtravel limit switches required.

ROTARY ENCODER CONTROL (ABSOLUTE CONTROL) ONE DIRECTION

Use the rotary encoder with a programmable controller, with an attached counter. A limit switch is used to initiate counting. An externally installed adjustable limit switch is recommended.

Direct control method

To provide absolute position control, external limit switches may be used to trigger the counter/control circuitry in the programmable controller.

B: Separately wired brake

M: Motor

RE: Rotary Encoder

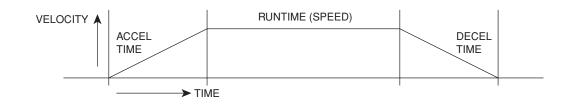
LS: External Stroke Adjustment Limit Switch

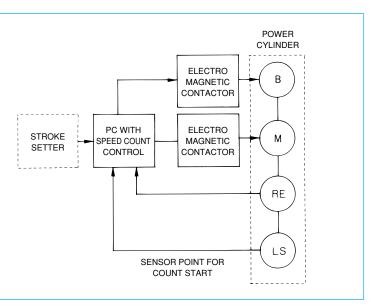
This system switches the motor off when the signal is received from the limit switch. The rod speed then decreases as it coasts towards the final stop position. When the stop position is reached the brake is applied as the rod speed decreases providing accurate positioning. **CAUTION: Overtravel limit switches required.**

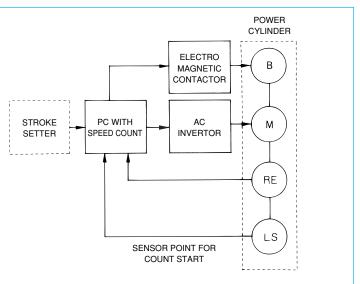
MOTOR SPEED CONTROL

Absolute position control with acceleration and deceleration can be provided by using an A.C. inverter coupled to the programmable controller to control motor speed.

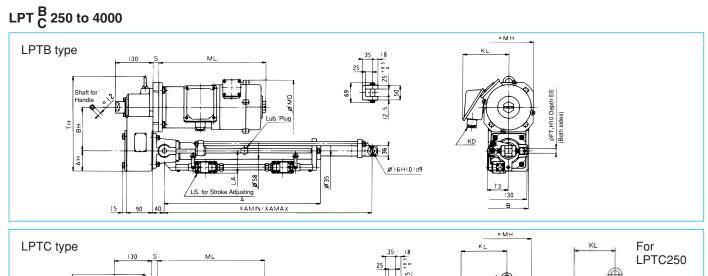
B: Separately wired brake

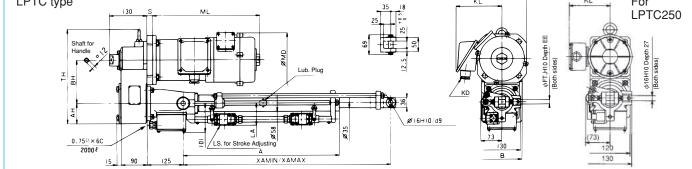

M: Motor


RE: Rotary Encoder


LS: External Stroke Adjustment Limit Switch

CAUTION: Overtravel limit switches required.


No matter what control method is used, where high inertia loads are to be driven horizontally or lifted or lowered vertically it is required that provision be made for control of the acceleration and deceleration rates. Failure to provide system control may result in damage to equipment or personal safety.



SPECIFICATIONS/DIMENSIONS

DIMENSIONS

Size	Speed mm/se	d Mo	tor		L	ength				He	eight			Width		Cyli	nder
	50/60H	Hz K	N E	B ₁	B ₂	С	F	S	AH	BH	TH	LB	AB	BB	TB	Q	R
LPT250S	12.5/1 25/30		1		40			_									
M	50/60		2 9	0 (40 125)	15	130		60	125	287	(101)	120	73	130	35	58
Н	100/12			`	,			_				(- /					
LPT500S	12.5/1 25/30				40			65	60	125	287				120		
M	50/60			0 (125)	15	130	_		120	201	(101)	130	73	120	35	58
Н	100/12			Ì	,			20	70	150	327				140		
LPT1000S L	12.5/1 25/30		4		50			65 —	-								
M	50/60	0 0.		0 (145)	15	130		70	150	327	(107)	140	_	150	40	70
Н	100/12							20									
LPT2000S L	12.5/1 25/30		75		50			70									
М	50/60) 1	5 1)5 (165)	16	145	_	85	165	367	(110)	170	_	180	50	76
Н	75/90							20								-	
LPT4000S L	9/11 25/30	0.	5		50			90	1								
М	35/42	2 2		30 (195)	18	170	20	100	195	446	(127)	200	_	220	70	95
Н	60/72	2 3	7					20									
	Trun	nion				E	nd fitting	1						Motor			Handle
Size	FT ₁	EE	E	FT ₂	GT	· H	T J	T k		L	LT	KD					
LPT250S									(T	L		KD	KL	MD	ML	MH	SH
L					0.1								KL	MD	ML 296	MH	SH
IVI	16	27	36	16	25						60 (DA-W1613	KL 123	MD 132		MH 120	SH 12
Н	16	27	36	16							60 (296		
H LPT500S	16	27	36	16							60 (DA-W1613			296 231 253	120	
LPT500S L	16 16	27	36	16		12	.5 1	8 2	25	35	60 (DA-W1613			296 231 253 231		
					25	12	.5 1	8 2	25	35	69)A-W1613 (¢11~13)	123	132	296 231 253	120	12
LPT500S L M H LPT1000S					25	12	.5 1	8 2	25	35	69)A-W1613 (¢11~13)	123	132	296 231 253 231 253 374 231	120 120	12
LPT500S L M H LPT1000S L					25	12	.5 1	8 2	25	35	69)A-W1613 (¢11~13)	123 123 123	132 132 132	296 231 253 231 253 374 231 253	120 120 170 120	12
LPT500S L M H LPT1000S L M H	16	27	36	16	25	12	.5 1	8 2	25	35	69 (69	DA-W1613 (φ11~13) A20C	123 123	132 132	296 231 253 231 253 374 231 253 374 439	120 120 170	12
LPT500S L M H LPT1000S L M H LPT2000S	16	27	36	16	25	12	.5 1	8 2	25	35	69 (69	A-W1613 (\$	123 123 123 123 159 172 123	132 132 132	296 231 253 231 253 374 231 253 374 439 253	120 120 170 120	12
LPT500S L M H LPT1000S L M H LPT2000S L	16	27	36	16	25	12	5 1 5 1 5 2	8 2 8 2 0 3	25	35 35 45	69 (69	DA-W1613 (φ11~13) A20C	123 123 123 159 172 123 159	132 132 132 132 186	296 231 253 231 253 374 253 374 231 253 374 439 253 374	120 120 170 120 170	12
LPT500S L M H LPT1000S L M H LPT2000S L M H	16	27 32	36	16	25 25 30	12	5 1 5 1 5 2	8 2 8 2 0 3	25	35	69 (69 82	A-W1613 (\$	123 123 123 123 159 172 123	132 132 132 132 186 132	296 231 253 231 253 374 231 253 374 439 253	120 120 170 120 170 120	12 12 12 12
LPT500S L M H LPT1000S L M H LPT2000S L L DT2000S	16	27 32	36	16	25 25 30	12	5 1 5 1 5 2	8 2 8 2 0 3	25	35	69 (69 82	A-W1613 (\$	123 123 123 159 172 123 159 172 123 159 179 159	132 132 132 132 186 132 186	296 231 253 231 253 374 231 253 374 439 253 374 439 253 374 439 374 374	120 120 170 120 170 120 170	12 12 12 12
LPT500S L M H LPT1000S L M H LPT2000S L M H	16	27 32	36	16	25 25 30	12 12 1: 1: 17	5 1 5 1 5 2 5 2	8 2 8 2 0 3 5 4	25 25 30 40	35 35 45 60	69 (69 82	A-W1613 (\$\$\$11~13) A20C A20C A20C A20C A25C	123 123 123 159 172 123 159 172 123 159 172 190	132 132 132 186 132 186 230	296 231 253 231 253 374 231 253 374 439 253 374 439 481	120 120 170 120 170 120 170 200	12 12 12 12

LPT250

Nominal	Thr	rust		VA Min	XA Max	LA
stroke	kN	{kgf}	A		A Max	LA
200			340	435	635	161
300			440	545	845	101
400	2.45	{250}	540	655	1055	
500			640	765	1265	76.5
600			740	870	1470	

LPT500

Nominal	Thr	rust				
stroke	kN	{kgf}	A	XA Min	XA Max	LA
200			340	435	635	161
300		{500}	440	545	845	101
400	4.90		540	655	1055	
500	4.90	10007	640	765	1265	76.5
600			740	870	1470	70.0
800			940	1090	1890	

LPT1000

Nominal	Thr	ust				
stroke	kN	{kgf}	A	XA Min	XA Max	LA
200			360	465	665	161
300			460	575	875	101
400	9.80	{1000}	560	685	1085	
500	5.00	{1000}	660	795	1295	
600			760	900	1500	76.5
800			960	1120	1920	
1000	7.84	{800}	1160	1340	2340	
1000	7.84	{800}	1160	1340	2340	

LPT2000

Nominal	Thr	rust				
stroke	kN	{kgf}	A		XA Max	LA
200			400	520	720	164
300			500	630	930	104
400	19.6	{2000}	600	740	1140	
500	13.0	120003	700	850	1350	
600			800	955	1555	79
800			1000	1175	1975	19
1000	15.7	{1600}	1200	1395	2395	
1200	12.3	{1250}	1400	1615	2815	

LPT4000

Nominal	Thr	rust		XA AA		
stroke	kN	{kgf}	A	XA Min	XA Max	LA
200			440	585	785	182
300			550	695	995	102
400			650	805	1205	
500	39.2	{4000}	750	910	1410	
600	00.2	[4000]	850	1020	1620	
800			1050	1235	2035	97.5
1000			1250	1450	2450	
1200			1450	1670	2870	
1500	33.3	{3400}	1750	1995	3495	

Size LPTB25 LPTC25 LPTB250 LPTC250 LPTB250 LPTC250 LPTB250

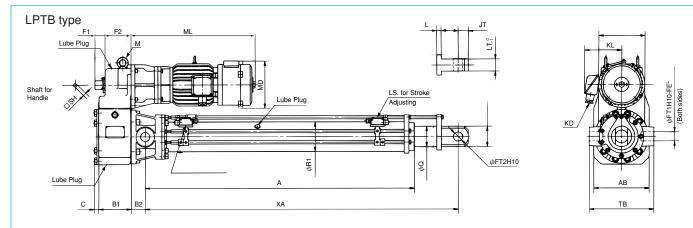
\sim Size LPTB50 LPTC50 LPTB50 LPTC50 LPTB50 LPTC50 LPTB500

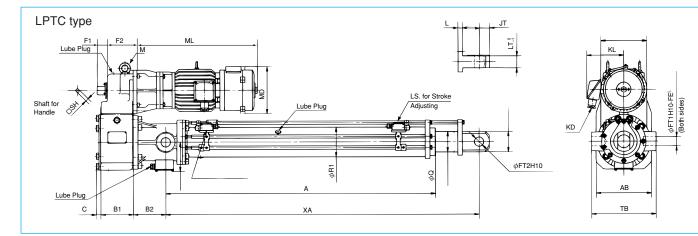
47

T Series TB type, TC type

Approx. Weight (kg)

Nominal stroke	200	300	400	500	600
50S	35	36	37	38	39
50S	39	40	41	42	43
50L	31	33	34	35	36
50L	35	37	38	39	40
50M	31	33	34	35	36
50M	35	37	38	39	40
50H	34	35	36	37	38
50H	38	39	40	41	42


Nominal stroke Size	200	300	400	500	600	800
LPTB500S	35	36	37	38	39	42
LPTC500S	39	40	41	42	43	46
LPTB500L	31	33	34	35	36	39
LPTC500L	35	37	38	39	40	43
LPTB500M	34	35	36	37	38	40
LPTC500M	38	39	40	41	42	44
LPTB500H	52	53	55	56	57	59
LPTC500H	56	57	59	60	61	63


Nominal stroke Size	200	300	400	500	600	800	1000
LPTB1000S	42	44	45	47	49	52	56
LPTC1000S	48	50	51	53	55	58	62
LPTB1000L	40	42	44	45	47	51	54
LPTC1000L	46	48	50	51	53	57	60
LPTB1000M	56	58	60	62	63	67	70
LPTC1000M	62	64	66	68	69	73	76
LPTB1000H	62	64	66	67	69	73	76
LPTC1000H	68	70	72	73	75	79	82

Nominal stroke Size	200	300	400	500	600	800	1000	1200
LPTB2000S	56	58	60	63	65	69	73	77
LPTC2000S	64	66	68	71	73	77	81	85
LPTB2000L	65	67	69	71	73	77	81	85
LPTC2000L	73	75	77	79	81	85	89	93
LPTB2000M	71	73	75	77	79	83	87	91
LPTC2000M	79	81	83	85	87	91	95	99
LPTB2000H	91	93	95	97	99	103	107	111
LPTC2000H	99	101	103	105	107	111	115	119

Nominal stroke Size	200	300	400	500	600	800	1000	1200	1500
LPTB4000S	100	104	107	111	114	121	128	135	146
LPTC4000S	115	119	122	126	129	136	143	130	161
LPTB4000L	99	102	106	109	112	116	126	133	144
LPTC4000L	114	117	121	124	127	131	141	148	159
LPTB4000M	118	122	126	129	133	140	146	153	164
LPTC4000M	133	137	141	144	148	155	161	168	179
LPTB4000H	137	140	144	147	151	158	165	172	182
LPTC4000H	152	155	159	162	166	173	180	187	197

LPT6000 ~ LPT32000

DIMENSIONS for LPT6000 ~ LPT32000

DIMENSIONS for		.00													
	Spee		Motor			Length					Height				dth
	50/60	Hz	kw	B ₁	B ₂	С	F ₁	F_2	AH	BH	IH	TH	LB	AB	TB
LPT6000S L M H	6.3/7 17.5/ 25/3 42/5	21 0 0	0.75 1.5 2.2 3.7	145	60 (155)	20	50	125	120	230	160	450	_	240	260
LPT8000S L M H	10/1 20/2 30/3 43/5	4 6 2	1.5 2.2 3.7 5.5	175	65 (165)	25	50	145	150	280	175	540	_	300	310
LPT12000L M H	10/1 18.5/ 30/3	22 6	2.2 3.7 5.5	175	75 (175)	25	50	145	150	280	175	540	_	300	350
LPT16000L M H	14.5/1 20/2 31/3	4 7	3.7 5.5 7.5	220	90 (180)	32	50	175	180	329	162	609	_	360	400
LPT32000L M H	10/1 15/1 20/2	8	5.5 7.5 11	280	130 (285)	42	85	190	260	590	275	1025	_	520	540
	Cyli	nder	Tru	nnion		End	d fitting		Motor					Oth	ner
	Q	R	FT ₁	EE	FT ₂	JT	L	LT	ł	<d< th=""><th>KL</th><th>MD</th><th>ML</th><th>SH</th><th>Z</th></d<>	KL	MD	ML	SH	Z
LPT6000S L M H	80	115	40	55	40	40	65	45	A: A: A:	20C 20C 25C 25C	159 162 190 201	186 186 230 255	461 436 501 544	17	16
LPT8000S L M H	95	130	45	60	45	45	70	50		20C 25C	162 190 201 229	186 230 255 304	573 481 524 616	17	16
LPT12000L M	110	160	50	70	50	55	90	65	A	25C	190 201 229	230 255 304	626 669 761	17	16
Н											201	255	669		
	130	180	63	75	63	65	100	80	A	25C	229 229	304 304	761 799	24	20

LPT6000

LPT8000

А

900

1400

1900

Nominal

stroke 500

1000

1500

Nominal stroke	А	XA Min	XA Max
500	855	1010	1510
1000	1355	1560	2560
1500	1955	2210	3710

XA Min

1065

1615

2165

XA Max

1565

2615

3665

XA Max

1760

2810

3860

4910

LPTB60 LPTC60 LPTB60 LPTC60 LPTB60 LPTC600 LPTB600 LPTC60

Size

Nominal stroke Size	500	1000	1500
LPTB8000S	236	267	298
LPTC8000S	266	297	328
LPTB8000L	233	263	293
LPTC8000L	263	293	323
LPTB8000M	251	281	312
LPTC8000M	281	311	342
LPTB8000H	286	316	346
LPTC8000H	316	346	376

LPT12000

Nominal stroke	А	XA Min	XA Max
500	950	1135	1635
1000	1450	1685	2685
1500	1950	2235	3735
2000	2450	2785	4785

XA Min

1260

1810

2360

2910

LPTC12
LPTB12
LPTC12
LPTB12
LPTC12

<u> </u>
Size
LPTB16
LPTC1
LPTB1
LPTC1
LPTB16
LPTC1

LPT32000

LPT16000 Nominal

stroke 500

1000

1500

2000

А

1060

1560

2060

2560

Nominal stroke	А	XA Min	XA Max
500	1315	1575	2075
1000	1815	2125	3125
1500	2315	2675	4175
2000	2815	3225	5225
	-		

T Series TB type, TC type

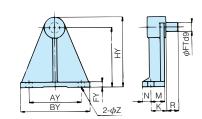
Approx. Weight (kg)

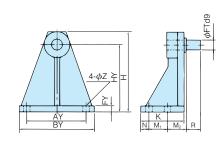
Nominal stroke	500	1000	1500
000S	153	178	203
000S	175	198	225
000L	163	188	213
000L	185	210	225
M000	178	203	228
M000	200	223	250
000H	193	218	243
000H	220	238	265

Nominal stroke Size	500	1000	1500	2000
LPTB12000L	291	333	375	417
LPTC12000L	330	372	414	456
LPTB12000M	306	348	389	432
LPTC12000M	345	387	428	471
LPTB12000H	340	382	422	455
LPTC12000H	379	421	461	504

Nominal stroke	500	1000	1500	2000
6000L	490	546	602	657
6000L	539	595	651	706
6000M	525	581	637	693
6000M	574	630	686	742
6000H	535	591	647	705
6000H	584	640	696	754

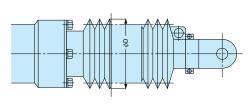
Nominal stroke	500	1000	1500	2000
2000L	1260	1358	1455	1556
2000L	1350	1448	1545	1646
2000M	1270	1368	1465	1566
2000M	1360	1458	1555	1646
2000H	1308	1406	1503	1604
2000H	1398	1496	1593	1694


T Series TB type, TC type


OPTIONS

CLEVIS MOUNTING ADAPTOR □в G 4-φN LPT250 0، LPT4000 MAXK <u>φL</u> H10/d9 LPT6000 LPT32000

CLEVIS MOU	JNTING AD	ΑΡΤΟ	R								(mm)
Power Cylinder Size	Size No. of Clevis	В	С	E	F	G	н	J	K max.	L	N
LPT250S L M H LPT500S L M	LPTB500-C	120	12.5	25	20	40	10	130	R25	16	11
LPT500H LPT1000S L M H	LPTB1000-C	140	15	30	25	40	12	140	R31	20	11
LPT2000	LPTB2000-C	170	17.5	35	30	55	15	170	R36	25	14
LPT4000	LPTB4000-C	200	20	40	40	70	20	210	R47	32	18
LPT6000	LPTB6000-C	240	22.5	45	50	85	22	240	—	40	18
8000	LPTB8000-C	300	25	50	55	100	25	300	—	45	18
12000	LPTB12000-C	300	32.5	65	60	120	27	300	—	50	22
16000	LPTB16000-C	360	40	80	70	145	30	360	—	63	22
32000	LPTB32000-C	520	65	125	100	240	40	520	—	90	26


TRUNNION MOUNTING ADAPTOR

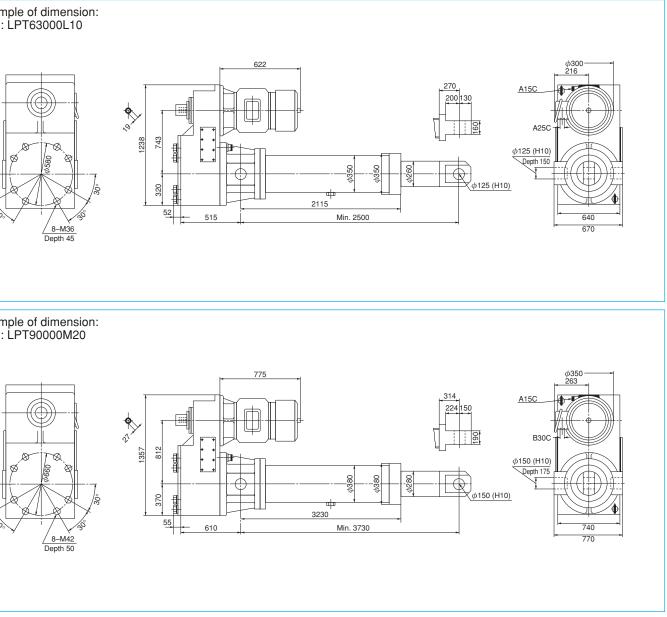
Power Cylinder Size Size No. of Trunnion AY BY FY FT HY K M N R Z LPT250S L A BY FY FT HY K M N R Z LPT250S L A LPTB500-T 130 180 15 16 150 52 40 25 25 18 LPT500S L PTB1000-T 130 180 15 20 150 45 40 25 30 18 LPT500H LPTB1000-T 130 180 15 20 150 45 40 25 30 18 LPT2000S L PTB2000-T 150 200 15 25 170 45 40 25 35 18 LPT4000S L PTB4000-T 180 240 20 32 170 55 50 30 45 22
M LPTB500-T 130 180 15 16 150 52 40 25 25 180 180 LPT500H LPTB1000-T 130 180 15 20 150 45 40 25 25 180 180 LPT500H LPTB1000-T 130 180 15 20 150 45 400 25 300 180 LPT2000S LPTB2000-T 150 200 15 25 170 45 400 25 330 180 15 LPT4000S LPTB2000-T 150 200 15 25 170 45 400 25 330 180 15 LPT4000S LPTB4000-T 180 240 20 32 170 45 400 25 330 45 25 LPT4000S LPTB4000-T 180 240 20 32 170 55 50 30 45 25
LPT1000S LPTB1000-T 130 180 15 20 150 45 40 25 30 140 LPT2000S LPTB2000-T 150 200 15 25 170 45 40 25 35 180 LPT2000S LPTB2000-T 150 200 15 25 170 45 40 25 35 180 LPT4000S LPTB4000-T 180 240 20 32 170 55 50 30 45 25
L LPTB2000-T 150 200 15 25 170 45 40 25 35 14 LPT4000S L LPTB4000-T 180 240 20 32 170 45 40 25 35 14
L LPTB4000-T 180 240 20 32 170 55 50 30 45 22
Trunnion Mounting Adaptor
Size No. of Trunnion AY BY FY H HY Z FT K N M1 M2 F
LPT6000 LPTB6000-T 220 280 22 290 240 22 40 160 30 70 5
8000 LPTB8000-T 250 320 25 335 280 27 45 185 35 80 6
12000 LPTB12000-T 280 360 27 360 300 33 50 195 40 85 7
16000 LPTB16000-T 320 400 30 450 380 33 63 210 40 90 7
32000 LPTB32000-T 400 500 35 420 320 45 90 275 50 120 11

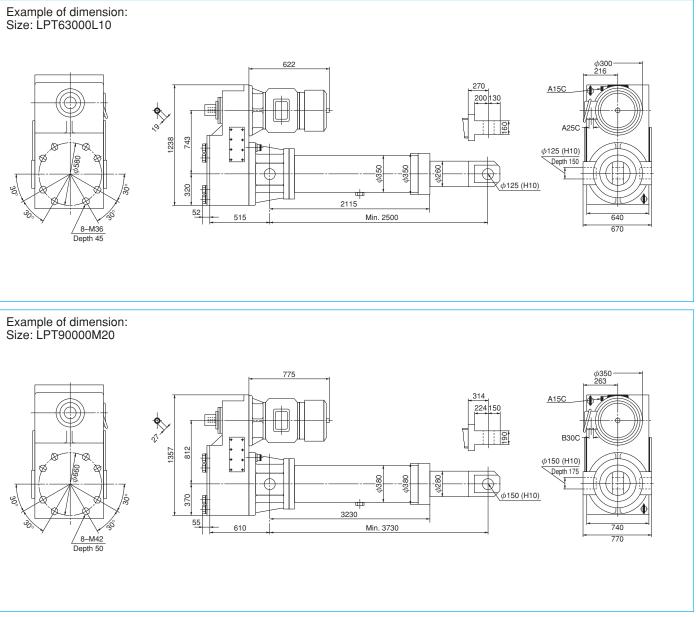
BELLOWS

BELLOWS	(mm)
Model No.	D
LPT500 and below	90
LPT1000	90
LPT2000	90
LPT4000	120
LPT6000	135
LPT8000	150
LPT12000	180
LPT16000	210
LPT32000	250

TRUNNION MOUNTING ADAPTOR

END FITTING	l type	С	
		 _	D -0.5

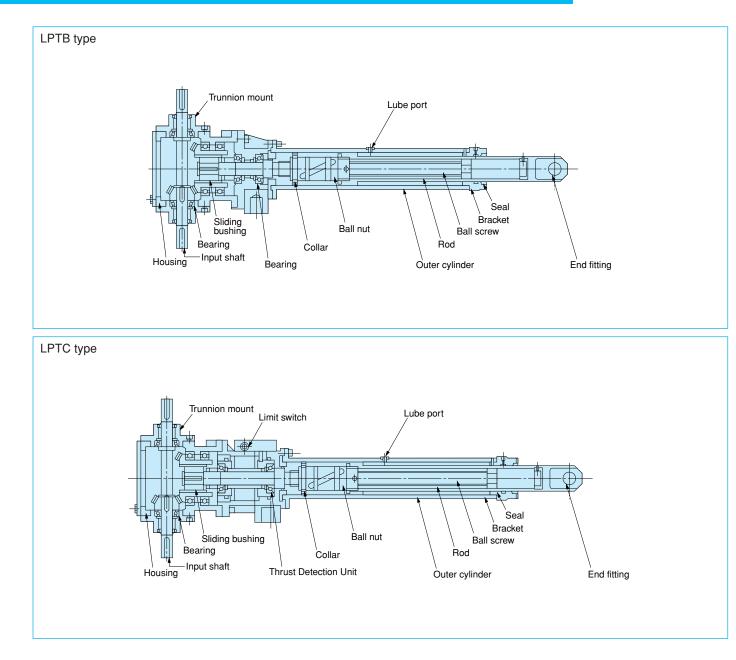

(mm)


END FITTING (n					
	А	В	С	D	
LPT250 LPT500	35	25	18	25	
LPT1000	45	30	20	30	
LPT2000	60	40	25	35	
LPT4000	75	50	35	40	

Ultra Heavy Duty Series

AVAILABLE DESIGN RANGE

Model		Thrust (kgf)	Speed mm/sec 50/60Hz	Stroke (mm)
LP63000	L M H	63000	7.5/9 10/12 15/18	1000~3000
LP90000	L M	90000	7.5/9 10/12	1000~3000
LP125000	L	125000	7.5/9	1000~3000



Please supply us your requirement including application, duty cycle, actual thrust force, speed, stroke and atmosphere. We will design the best matched Power Cylinder for you.

Multi Series

CYLINDER

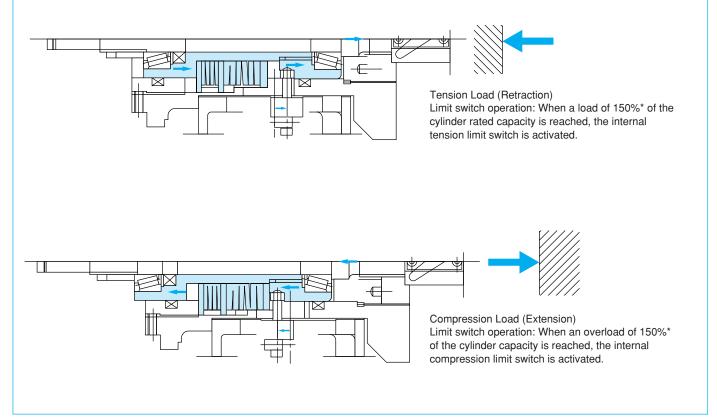
- Ball screws convert rotary motion into linear motion. Cylinder stroke can be adjusted by an externally mounted limit switch.
- Limit switches for outdoor use are available.
- Bellows are available for additional protection for outdoor use.
- Integral dust seal for cylinder rod is rated for outdoor use.

GEAR BOX

- Heat treated spiral bevel gears for tough dependable performance.
- Cradle movement is also possible with multiple cylinder operation.
- Low Maintenance. Leak Proof

LPTB and LPTC FEATURES

TB Type Features


- Economical ball screw drive.
- Light weight and compact.
- During stopping, rod position is kept stationary by driver source brake.

TC Type Features

- Press-loaded stopping, stroke and self-stopping (Consult Tsubaki).
- Electrical overload indication (optional).
- When Power Cylinder is stopped, this mechanism allows absorption of shock or overload from driven side.

THRUST LIMITING MECHANISM AVAILABLE – TC TYPE

The TC Power Cylinder utilizes an internal thrust detection system. This unique system is employed to detect thrust loading-providing electrical feed back that allows press/pull stopping. Two types of disk springs with different spring rates are coupled with cam operated limit switches, which result in a system that will allow press stopping during high speed operation in both tension and compression of the Power Cylinder. (For thrust ratings in excess of 6 tons only one type of spring is used.)

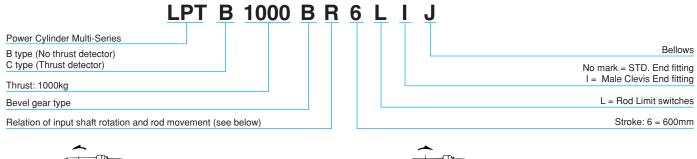
* The internal thrust detection mechanisms are not user adjustable and may vary ±15%

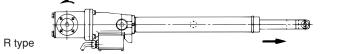
STANDARD SPECIFICATIONS

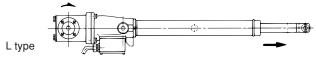
Model		LPT500B	LPT1000B	LPT2000B	LPT4000B	LPT6000B	LPT8000B	LPT12000B	LPT16000B	LPT32000B
Themas	kN	4.90	9.80	19.6	39.2	58.8	78.4	118	157	314
Thrust	{kgf}	500	1000	2000	4000	6000	8000	12000	16000	32000
Screw lead	mm	6	8	10	12	12	16	16	24	24
Gear ratio		2	2	2	2	2	2	2	2	2
Overall efficiency	%	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5
No lood idling targue	N⋅cm	0.74	2.06	5.19	14.7	23.5	108	160	331	624
No-load idling torque	{kgf·cm}	0.075	0.21	0.53	1.5	2.4	11	16.3	33.8	63.7
Lielding targue	N∙m	1.78	4.74	11.9	28.4	42.7	75.9	114	228	455
Holding torque	{kgf·m}	0.18	0.48	1.21	2.90	4.35	7.74	11.6	23.2	46.4
Allowable input shaft torque (Note 1.)	N∙m	11.0	29.3	73.2	176	264	471	353	707	1413
Allowable input shalt torque (Note 1.)	{kgf·m}	1.12	2.99	7.47	17.9	26.9	48.1	36.1	72.2	144.2
Necessary input torque per	N∙m	2.74	7.32	18.3	43.9	65.9	118	177	354	707
basic capacity (Note 2.)	{kgf·m}	0.28	0.75	1.87	4.48	6.73	12.0	18.0	36.1	72.1
Screw movement per input shaft revoluti	ion mm	3	4	5	6	6	8	8	12	12
Movingum input chaft rom	LPTB	2400	1800	1080	720	500	382.5	255	180	120
Maximum input shaft rpm r/min	LPTC	1200	900	720	420	300	270	165	120	90
Screw shaft rotational torque at	N·m	5.20	13.9	34.7	83.2	125	222	333	665	1331
the basic capacity	{kgf·m}	0.53	1.41	3.54	8.49	12.7	22.6	34.0	67.9	136
		200, 300	200, 300	200, 300	200, 300	500	500	500	500	500
Other		400, 500	400, 500	400, 500	400, 500	1000	1000	1000	1000	1000
Stroke	mm	600, 800	600, 800	600, 800	600, 800	1500	1500	1500	1500	1500
					1000, 1200			2000	2000	2000

Note: 1. Allowable torque of input shaft only. (Please confirm when link operation.)

2. This torque are including no-load idling torque.


AMBIENT CONDITIONS


Outdoor Use	Temperature	Shock
Outdoor Ose	–20°C ∼ 80°C	Less Than 3G


Note: 1. These ambient conditions apply only to the main body of the cylinder, the motor or other optional parts may have varying requirements. Bellows are recommended for dirty or dusty surroundings.
 For use near the sea, modified paint and limit switches are available and recommended for proper protection against corrosion.

Paint: Munsell 5GY 6/0.5

MODEL NUMBER AND ORDERING EXPLANATION

MULTI- SERIES POWER CYLINDER SELECTION

REQUIRED ORDER INFORMATION

- 1. Type
- 2. Thrust and inertia load (kgf)
- 3. Stroke (mm)
- 4. Speed (mm/sec.)

SELECTION PROCEDURE

- 1. Decide what type of cylinder is needed for the application, LPTB or LPTC.
- 2. Choose the service factor from the table.
- 3. Calculate annual running distance using stroke, frequency of use, working hours.

Annual running distance (km)

= Stroke under load (m) × Frequency of starts (time/day) imes Working days (days/year) imes 10⁻³

4. When load varies during operation, calculate equivalent load as follows:

Рм =	$PMin + (2 \times PMax)$	Рм	= Equivalent load (kgf)
1 101 -	3	PMin	= Minimum load (kgf)
		Рмах	= Maximum load (kgf)

5. For synchronous operation determine "Multi-Factor" from table.

6. Calculate Equivalent Load

= Thrust × Service Factor × Multi-Factor

Service Factor

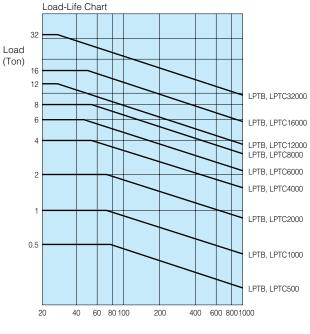
Characteristics	Typical application	SF
Uniform/no shock Low inertia	Opening/Closing damper, valve	1
Light shock Medium inertia	Opening/closing hopper gate Loading, unloading lifter	1.2
Heavy shock, Vibration	Buffer for belt conveyer, Heavily loaded car.	1.5 2

Multi Factor

Number of units	2	3	4	5	6	
Multi factor	1.0	1.0	1.0	1.25	1.50	
Please consult Tsubaki when more than six units are required						

Please consult Tsubaki when more than six units are required

MOTOR SELECTION


Various types of motors may be used, (a brake is necessary due to the high efficiency of the ball screw) power-off type brakes are recommended, and the torque of the brake should exceed 150% of the required for the load.

Motor capacity is calculated as follows:

- $kw = \frac{P \times V}{102 \times \eta}$
- kw = Motor capacity (kw) = Driven load (kgf) Р
- = Velocity (m/s) V
- = Cylinder efficiency ($\eta = 0.85$) n (at rated thrust)

55

- 5. Frequency of starts (times/min.)
- 6. Operational hours per day and annual running days
- 7. Load characteristics
- 8. Ambient conditions
- 7. Select the type of cylinder from calculated equivalent load and stroke required.
- 8. Check life of cylinder by comparing annual running distance with load life chart.

Life in running distance (km)

Life is based on B10 life of ball screw.

Efficiency of other elements, such as gear reducers, must also be taken into consideration.

Note:

- 1. If motor is larger than required, it will cause damage to the cylinder.
- 2. The brake must be connected to the power source separately from the motor.

MAINTENANCE

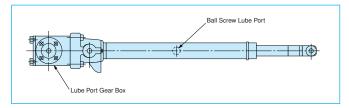
BALL SCREW LUBRICANT REPLACEMENT

Grease must be applied to ball screw. Grease can be injected through the grease port of the cylinder after extending the actuator rod to the forward stroke end.

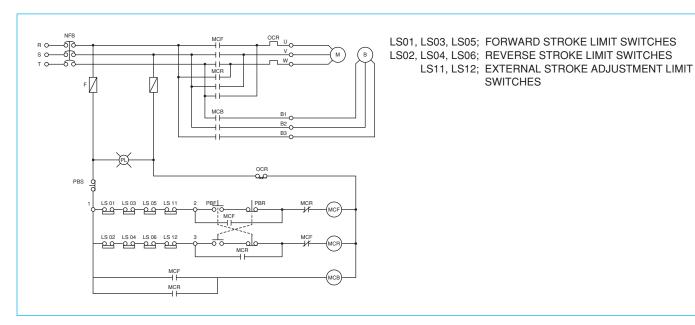
Recommended Grease

Ball screw	SHELL	SHELL ALVANIA EP No. 2
Dali Sciew	MOBIL	MOBILUX EP No. 2

Lubrication Cycle for Ball Screw


Frequency of starts/day	Lubrication Cycle
500~1000	3 to 6 months
100~500	6 to 12 months
10~100	12 to 18 months

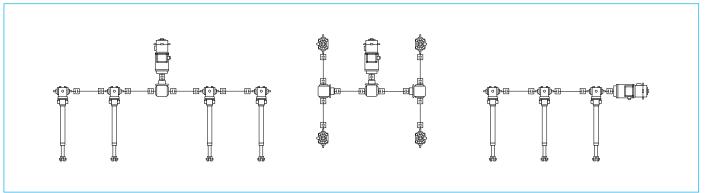
GEAR BOX LUBRICATION


Gears and bearings are pre-lubricated with grease, and require no additional maintenance. After long term operation or storage, grease quality may deteriorate. Unit should be checked and additional grease added if necessary.

Recommended Grease

Gear box	SHELL	SHELL ALVANIA EP No. 1
Gear box	MOBIL	MOBILUX EP No. 1

WIRING



An example wiring diagram is shown here. For reference only. All Limit Switches in series.

LIMIT SWITCHES SPECIFICATIONS

	Stroke adjustment Limit Switch (External)	Thrust detection Limit Switch	
Power Cylinder	All Sizes	LPTC 250 ~ LPTC 32000	
Limit switch	WLCA 2 (OMRON)	V-165-1AR5 (OMRON)	
Current	AC 250V 10A (cos ϕ = 0.4)	AC 250V 10A (cos ϕ = 0.4)	
		Forward Reverse	
Contact configuration	NC 1	Red3 Green4 Black $- 0^{-1}$ $- 0^{-1}$ Yellow $- 0^{-1}$ Yellow $- 0^{-1}$ $- 0^{-1}$ Form	
Connection	SCS-10B (<i>\phi</i> 8.5 ~ <i>\phi</i> 10.5) PF1/2	SCL-14A (<i>φ</i> 10.5 ~ <i>φ</i> 12.5) PF1/2	

APPLICATION INFORMATION

1. SYNCHRONOUS OPERATION

The Multi-cylinder allows synchronous operation of several units. The above diagrams illustrate some possible installation options.

2. OVERLOAD PROTECTION

When a LPTB type is used, a torque limiter coupling is recommended on the motor output shaft to protect against overload. A torque limiter coupling is not necessary for the LPTC type, however thrust detectors for each Power Cylinder must be individually wired to the power source, separate from the motor.

3. STROKE ADJUSTMENT

Stroke is limited by external limit switches at both ends. Limit switches are available for mounting to Power Cylinder body. Rod "coasting" distance must be considered when determining proper positioning of limit switches. All upper and lower limit switches must be wired in series.

4. ROD ROTATION REACTION TORQUE

The thrust of the actuator rod creates a reaction torque. Generally, connection to the driven load prevents rotation. If the actuator rod end piece is required to rotate freely or if the actuator rod is used to drive a rolling car or to pull a load with a wire rope or chain, please contact Tsubaki.

5. THRUST DETECTOR

Preset thrust detector setting of LPTC Series Power Cylinder is 150% of rated thrust and the safety device does not operate during normal turning, inclining and lifting motion starts. However, in applications with a heavy load or vehicle, the safety device may be triggered during starting or cutting off operation. Please consult Tsubaki.

6. ALIGNMENT

Proper alignment of trunnion and rod end centers is very important, and care must be taken to ensure it is done correctly. A side load must not be applied to the cylinder during operation.

Table 1 Allowable overhung load

Size - LPTB, TC	500	1000	2000	4000	6000	8000	12000	16000	32000	l /Q	0.25	0.38	0.5	0.75	1
Allowable O.H.L. (kgf)	56	108	199	356	469	689	903	1430	2280	Lf	0.8	0.90	1.0	1.50	2

7. FLOATING SHAFT

Long floating shafts may induce vibration. Shaft rigidity and backlash of coupling must be carefully checked.

8. COUPLING

Chain, gear, and flange type couplings are recommended for connecting input shaft.

9. OVERHUNG LOAD (O.H.L)

Be sure that overhung load is below the limit (Table 1) before installing gears, sprockets and pulleys on a shaft.

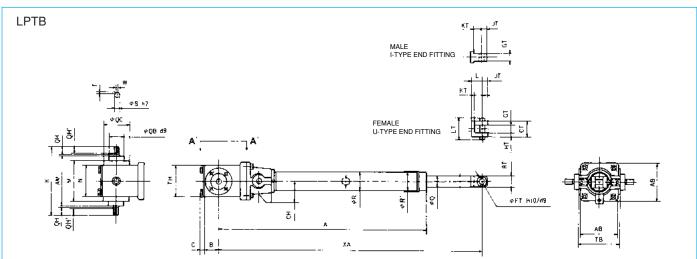
Allowable O.H.L.
$$\geq \frac{T \times f \times Lf}{R}$$

Drive Factor: f

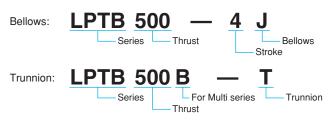
Chain sprocket	1.00
Gear	1.25
V-belt pulley	1.50
Flat-belt pulley	2.50

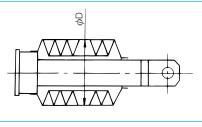
O.H.L (kgf):

f = Drive factor

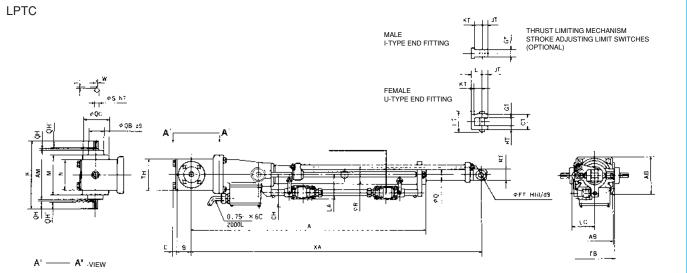

- Lf = Load position factor
- R = Radius of sprockets, gears, V-pulleys etc.

 ℓ = Distance of load position Q = Shaft length


Load position factor: Lf


DIMENSIONS

0.	0	Len	igth		I	nput	shat	ft		In	put k	orack	et	G	ear h	ousi	ng			Brad	cket						En	ıd fitt	ing			
Size	Stroke	Α	XA Min.	S	W	Т	QH	QH'	K	QB	QC	AM	Μ	AB	TH	В	С	N	СН	ΤВ	Q	R	R'	RT	CT	GT	HT	LT	KT	L	JT	FT
LPTB 500	200 300 400 500 600 800	470 570 670 770 870 1070	565 675 785 895 1000 1220	15	5	5	25	22	220	50	85	160	130	120	100	45	15	100	68.5	130	35	58	63	36	50	25	12.5	69	25	35	18	16
1000	200 300 400 500 600 800	500 600 700 800 900 1100	605 715 825 935 1040 1260	15	5	5	25	22	220	50	85	160	130	120	100	45	15	100	48	150	40	70	75	40	60	30	15	82	30	45	20	20
2000	200 300 400 500 600 800	560 660 760 860 960 1160	680 790 900 1010 1115 1335	20	6	6	30	25	270	60	110	200	160	130	130	55	17	130	71	180	50	76	81	50	70	35	17.5	99	40	60	25	25
4000	200 300 400 500 600 800 1000 1200	645 745 845 945 1045 1245 1445 1645	780 890 1000 1105 1215 1430 1645 1865	35	10	8	70	60	450	80	160	300	230	190	190	80	17	190	90	220	70	95	100	70	80	40	20	115	50	75	35	32
6000	500 1000 1500	1075 1575 2175	1230 1780 2430	35	10	8	70	60	480	80	160	330	260	220	220	80	17	220	_	260	80	115	_	80	—	45	_	_	65	—	40	40
8000	500 1000 1500	1145 1645 2145	1310 1860 2410	40	12	8	80	70	550	90	180	380	300	260	210	90	22	240	_	310	95	130	_	95	_	50	_	_	70	_	45	45
12000	500 1000 1500 2000	1205 1705 2205 2705	1390 1940 2490 3040	40	12	8	80	70	550	90	180	380	300	260	210	90	22	240	_	350	110	160	_	110		65	_	_	90	_	55	50
16000	500 1000 1500 2000	1370 1870 2370 2870	1570 2120 2670 3220	50	14	9	85	75	630	120	220	440	340	320	280	110	25	280	_	400	130	180	_	130	_	80	_	_	100	_	65	63
32000	500 1000 1500 2000	1795 2295 2795 3295	2055 2605 3155 3705	60	18	11	120	100	940	200	320	680	520	500	450	175	25	450		540	180	240	_	180		125	_	_	140		90	90


OPTION

Bellows


LPTB/LPTC	500	1000	2000	4000	6000	8000	12000	16000	32000
D	90	90	90	120	135	150	180	210	250

0:	Otralia	Ler	igth		l	nput	shaf	t		In	out k	rack	ket	Ge	ear h	ousi	ng		В	rack	et						En	d fitt	ing				
Size	Stroke	А	XA Min.	S	W	Т	QH	QH'	K	QB	QC	AM	Μ	AB	TH	В	С	Ν	CH	TB	Q	R	FT	RT	CT	GT	HT	LT	ΚT	L	JT	LA	LC
LPTC 500	200 300 400 500 600 800	555 655 755 855 955 1155	650 760 870 980 1085 1305	15	5	5	25	22	220	50	85	160	130	120	100	45	15	100	101	130	35	58	16	36	50	25	12.5	69	25	35	18	<u>161</u> 76.5	73
1000	200 300 400 500 600 800	595 695 795 895 995 1195	700 810 920 1030 1135 1355	15	5	5	25	22	220	50	85	160	130	120	100	45	15	100	107	150	40	70	20	40	60	30	15	82	30	45	20	<u>161</u> 76.5	73
2000	200 300 400 500 600 800	675 775 875 975 1075 1275	795 905 1015 1125 1230 1450	20	6	6	30	25	270	60	110	200	160	130	130	55	17	130	110	180	50	76	25	50	70	35	17.5	99	40	60	25	164 79	76
4000	200 300 400 500 600 800 1000 1200	790 890 990 1090 1190 1390 1590 1790	925 1035 1145 1250 1360 1575 1790 2010	35	10	8	70	60	450	80	160	300	230	190	190	80	17	190	127	220	70	95	32	70	80	40	20	115	50	75	35	<u>182</u> 97.5	85
6000	500 1000 1500	1170 1670 2270	1325 1875 2525	35	10	8	70	60	480	80	160	330	260	220	220	80	17	220	139	260	80	115	40	80	_	45	_	_	65	_	40	_	—
8000	500 1000 1500	1245 1745 2245	1410 1960 2510	40	12	8	80	70	550	90	180	380	300	260	210	90	22	240	145	310	95	130	45	95	_	50	_	_	70	_	45	_	-
12000	500 1000 1500 2000	1305 1805 2305 2805	1490 2040 2590 3140	40	12	8	80	70	550	90	180	380	300	260	210	90	22	240	160	350	110	160	50	110	—	65		_	90	_	55		_
16000	500 1000 1500 2000	1460 1960 2460 2960	1660 2210 2760 3310	50	14	9	85	75	630	120	220	440	340	320	280	110	25	280	170	400	130	180	63	130	_	80	_	_	100	_	65	_	
32000	500 1000 1500 2000	1950 2450 2950 3450	2210 2760 3310 3860	60	18	11	120	100	940	200	320	680	520	500	450	175	25	450	238	540	180	240	90	180	_	125	_	_	140	_	90		

TRUNNION ADAPTER DIMENSIONS

S	Size	AY	BY	FY	HY	RY	FT	F	K	М	Ν	R	Z	
LPTB LPTC	500	130	180	15	150	40	50	_	45	65	25	15	18	
LPTB LPTC	1000	130	180	15	150	40	50	_	45	65	25	15	18	1
LPTB LPTC	2000	150	200	15	170	50	60		45	65	25	20	18	
LPTB LPTC	4000	180	240	20	170	70	80		55	80	30	35	22	
LPTB LPTC	6000	180	240	20	170	70	80		55	80	30	35	22	
LPTB LPTC	8000	250	320	25	280	80	90	80	80	185	35	40	27	
LPTB LPTC	12000	250	320	25	280	80	90	80	80	185	35	40	27	2
LPTB LPTC	16000	320	400	30	320	100	120	90	90	210	40	50	33	
LPTB LPTC	32000	400	500	35	380	160	200	120	120	275	50	80	45	

CONTROL BOXES

CONTROL BOXES FOR POWER CYLINDERS

- 1. TYPE A The Rod goes forward/reverse when the forward/reverse switch is pushed.
- 2. TYPE B The rod goes forward/reverse by a fixed stroke after the forward/reverse switch is pushed. Rod will stop by the function of a limit switch on the Power Cylinder. The rod will stop at any position when the stop switch is pushed.
- 3. **TYPE** C Has both A and B type functions.
- 4. TYPE D Has not only A and B functions but also stroke indicator. A built-in potentiometer is actuated by the movement of the rod and shows the position of the rod on a meter.

Type C for Mini Series

Types A & B

Type D

Outdoor type

		Power Cylinder			Basic Specific	cations		l	ndoo	r typ	е	0	utdoo	or typ	ре
Model & Type	G series	*T series	Ultra Heavy	Power	Motor	Break	Thermal relay		Ту	ре	-		Ту	ре	
	G series	i series	series	Source	IVIOLOI	capacity	relay setting current	А	В	С	D	A	В	С	D
LP40C-C	_	_	_	50/60Hz 100V	4P-20W	2A	0.5A			•	0			\bigtriangleup	
LP250C-	_	250S.L. 500S			4P-0.1kW	ЗA	0.65A	•	•	0	0	0	0	\bigtriangleup	
LP500C-	_	250M 500L 1000S			4P-0.2kW	4A	1.2A	•	•	0	0	0	0	Δ	Δ
LP1000C-	LPG070 LPG100 LPG300	250H 500M 1000L 2000S			4P-0.4kW	5A	2.5A	•	•	0	0	0	0	Δ	Δ
LP2000C-	_	500H 1000M 2000L 4000S 6000S			4P-0.75kW	10A	4.0A	•	•	0	0	0	0	Δ	Δ
LP4000C-	_	1000H 2000M 4000L 6000L 8000S			4P-1.5kW	15A	8.0A	•	•	0	0	0	0	Δ	Δ
LP8000C-	_	2000H 4000M 6000H 8000L 12000L		50/60Hz 200/220V	4P-2.2kW	15A	9.3A	•	•	0	0	0	0	\square	Δ
LP16000C-	_	4000H 6000H 8000M 12000M 16000L			4P-3.7kW	20A	14.6A	•	•	0	0	0	0		Δ
LP32000C-		8000H 12000H 16000M 32000L			4P-5.5kW	40A	22.6A	0	0	0	0	0	0	\bigtriangleup	Δ
LP63000C-		16000H 32000M	LP63000L		4P-7.5kW	50A	28.9A	0	0	0	0	0	0	\bigtriangleup	Δ
LP90000C-		32000H	LP63000M LP90000L		4P-11kW	75A	44.5A	0	0	0	0	0	0	Δ	Δ
LP125000C-	_		LP63000H LP90000M LP125000L		4P-15kW	100A	58.0A	0	0	0	0	0	0	Δ	Δ

* Without LPTC-M and LPTC-H. LPTC-M and LPTC-H are M.T.O. basis.

●: Available O: Available upon request (M.T.O). △: To be designed as per request

ENQUIRY SHEET

Specify the following when ordering

Item	Descr
Name of equipment and machinery	
Working load	Push
Working load	Pull
Stroke	
Speed	
Power	Phase
rowei	Frequency
Frequency of exercises	Times/mm
Frequency of operation	Times/day
Fitting method	Trunnior
Atmoonhoro	Ambient temp.
Atmosphere	Moisture, gas, dust
Place to be installed	Indoors or
Control box	Necessary or unnecessary
Control box	If necessary specify contro
Optional parts required	
Remarks	
Homano	

- Do not release the brake when the Power Cylinder is supporting a load. If the brake is released when under loaded conditions, suspended objects may fall or movable parts may suddenly move.
- When manually operating the Power Cylinder by the manual shaft, make sure that the Power Cylinder is not supporting a load. Operate the Power Cylinder according to the handling manual.
- When using for suspended operations, provide safety shelving to prevent falling and never stand under the cylinder when in operation.
- regulations of such.
- Installation, removal, maintenance and inspection:
- Carry out operation according to the handling manual.
- handling manual.

To avoid accidents please comply with the below points

- may result an accident.
- adjusted correctly.
- may result in motor burnout or fire.
- Efficiency and functioning of parts may lessen with wear and age. Carry out periodic inspection as set out in the handling manual. When functioning or efficiency is defective please contact a Tsubaki distributor for repairing.
- Tsubaki or your Tsubaki distributor, indicating the product name, series, and number.
- The handling manual must be delivered to the final user.

Caution

• The product information contained in this catalog is mainly to assist in selection of machinery. Before using this product please thoroughly read the "handling manual" and correctly operate the product.

ription	Application sketch
kgf	
kgf	
mm	
mm/sec.	
V	
Hz	
n, Clevis	
r outdoors	
у.	
ol method	

▲ SAFETY POINTS

Warning

To avoid danger please comply with the below points

• Observe the Labor Safety & Hygiene Regulations, General Criteria, Paragraph 1, Chapter 1, Edition 2, or your local

When performing electrical wiring, observe Laws and Regulations such as Electricity Equipment Criteria and Extension Rules, as well as following cautions (Ex. direction, space, operating conditions, etc) indicated in the

Especially, follow the instructions with regard to grounding so as to prevent electric shocks. Shut down the power source and make sure that power will not be turned on accidentally (Ex. Power lock etc.). · Wear the proper work clothes and protective accessories (safety glasses, gloves, safety shoes, etc.).

Caution

• Always operate within the allowable stroke range. Operating the Power Cylinder outside the allowable stroke range

• Before switching on the power, make sure that the limit switches have been wired correctly and the stroke has been

• Operate the Power Cylinder within correct electrical voltage range. Operating the Power Cylinder outside this range

• The Handling manual is supplied with the product. Please read it before use and refer to the instructions to ensure correct usage of the product. If the handling manual cannot be found, please request a replacement copy through