TSUBAKI POWER CYLINDER

HIGH PERFORMANCE LINEAR ACTUATORS OFFERING EFFICIENT, CLEAN AND QUIET DRIVE.… ENVIRONMENTAL CONSCIOUSNESS

Battery Series		F Series	G Series		T Series
Small	Mid.		GA- ${ }_{K}^{\top}$ type	GC-K ${ }_{-}^{\text {- }}$ type	TB type
	ompact a $\mathrm{C} 12 \mathrm{~V} \text { or }$				dumper rts

T Series	Ultra Heavy Duty Series	Multi Series
TB type \quad TC type		TB type \quad TC type
- For general industrial use, hopper gate \& dumper - High grade series with various optional parts		- Synchronized operation of multiple units

 $600080001200016000320002505001100020004000600080001200016000320006300090000125000500|1000| 2000400060008000120001600032000$ 6.37.6 10/12

$$
\begin{aligned}
& \text { Depending upon the type and input r.p.r. } \\
& \text { See Max. Input } r \text {..m.mon page } 55 \text {. }
\end{aligned}
$$

25/30 $30 / 36$ 18/22 $20 / 24$ 15//8 $50 / 60$ 50/60 $50 / 60$ 50/60 $35 / 42$ 25/30 $30 / 3618 / 22$ 20/24 $15 / 18$ 10/12 $10 / 12$

$$
\text { See Max. Input r.p.m. on page } 55 \text {. }
$$

D.C. MOTOR SERIES

FEATURES

. Compact and clean electro-mechanical drive for linear
movement.
2. No piping for hydraulic fluid or compressed
4. Mall type overload clutch is equipped for overload protection.
5. Weatherproof for indoor and outdoor operation.
6. Press contact stopping is available for LPAO1OM \& LPA04OL.

SPECIFICATIONS

$\begin{gathered} \hline \text { Model } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Rated } \\ \text { Load (kgf) } \end{gathered}$	$\begin{gathered} \text { Stroke } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Speed } \\ (\mathrm{mm} / \mathrm{sec} .) \end{gathered}$	Voltage	Current (A)
LPA010M (V)	10	50	$=\begin{gathered} 50 \\ \text { (at full load) } \end{gathered}$	$\begin{aligned} & \text { DC12V } \\ & \text { (DC24V) } \end{aligned}$	$\begin{gathered} 3.4(1.7) \\ \text { (at full load) } \end{gathered}$
		100			
		150			
		200			
LPA040L (V)	40	50	$\left\{\begin{array}{c} 15 \\ \text { (at full load) } \end{array}\right.$	$\begin{aligned} & \text { DC12V } \\ & \text { (DC24V) } \end{aligned}$	$\begin{gathered} 3.0(1.5) \\ \text { (at full load) } \end{gathered}$
		100			
		150			
		200			

1. Use the battery cylinder below the rated load and speed in the table.
2. Speed and motor current vary depending upon the load applied.

LPA010M

LPA040L

TYPICAL APPLICATIONS

1. Agricultural Equipment

Silage chutes, conveyors, cutter bar control transmission shifters
tractor accessory lifts.
2. Industrial Equipment
Belt speed and tension controls, flue and draft controls, table lifts hatch covers, ventilator controls.
3. Medical Equipmen

Dental chairs, hospital beds, examination tables, X -ray equipment, invalid lifts, patient handlers
Container tippers, dump chute doors, elevators, containe positioners, conveyor switching, and trip devices.
5. Recreational Equipment

Satellite systems, trailer actuators.

Model No.	$\begin{gathered} \text { Rated } \\ \text { Load (kgf) } \end{gathered}$	$\begin{aligned} & \hline \text { Stroke } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \hline \text { Speed } \\ (\mathrm{mm} / \mathrm{sec} .) \end{gathered}$	Voltage	Current (A)
LPA100M	100	50	$\left\lvert\, \begin{gathered} 27 \\ \text { (at full load) } \end{gathered}\right.$	$\begin{aligned} & \text { DC12V } \\ & \text { (DC24V) } \end{aligned}$	$\begin{array}{\|c\|c} 13 \\ \text { (at full load) } \end{array}$
		100			
		150			
		200			
LPA150L	150	50	$\text { - } \begin{gathered} 17 \\ \text { (at full load) } \end{gathered}$	$\begin{aligned} & \text { DC12V } \\ & \text { (DC24V) } \end{aligned}$	$\begin{array}{\|c} 13 \\ \text { (at full load) } \end{array}$
		100			
		150			
		200			

LPA100M

LPA150L

DIMENSIONS/ENGINEERING INFORMATION

DIMENSIONS
 LPA010M
 DIMENSIONS
 PA100M

Model No .	Dimensions (mm)				$\begin{gathered} \text { Approx. } \\ \text { Weight } \\ \text { (kg) } \\ \hline \end{gathered}$
	Stroke (mm)	A	XAMIN.	XAMAX.	
LPA010M0. 5 (V)	50	129.5	190	240	0.8
LPA040LO. 5 (V)					
LPA010M1.0 (V)	100	179.5	240	340	0.9
LPA040L1.0 (V)					
LPA010M1. 5 (V)	150	229.5	290	440	1.0
LPA040L1.5 (V)					
LPA010M2.0 (V)	200	279.5	340	540	1.1
$\underline{\text { LPA040L2.0 (} \mathrm{V})}$					

Model No.	Stroke (mm)	Dimensions (mm)			$\begin{gathered} \text { Approx. } \\ \text { Weight } \\ \text { Wegg) } \\ \hline \end{gathered}$
		A	XA MIN.	XAMAX.	
LPA100M0. 5	50	77	205	255	3.6
LPA150L0.5					
LPA100M1.0	100	127	255	355	3.9
LPA150L1.0					
LPA100M1.5	150	177	305	455	4.2
LPA150L1.5					
LPA100M2.0	200	227	355	555	4.5
LPA150L2.0					

ENGINEERING INFORMATION

(1) Wiring
For norm

For normal inching operation, please refer to the circuit below;

LPA040L

PA150L

F Series

FEATURES

1. Compact design with right angled connection between motor and actuato
2. Right angled two-way clevis holes make four position of mounting
3. Press stopping is available with overload detecting unit (Option).
4. Both $\mathrm{DC}(12 \mathrm{~V}$ or 24 V) and AC (100 V or 200 V with AC adapter) are applicable for power source
5. Variety of options are available such as stroke adjustment external LS, bellows, position detecting unit. AC adapter, overload detecting unit and so on.

MODEL No

LPF 040 L 2.0 V L K2 P J
Power Cylinder F Series Thrust 010: 100N \{10.2kg $020: 200 \mathrm{~N}\{20.4 \mathrm{kgf}$
$040: 400 \mathrm{~N}\{40.8 \mathrm{kgf}$
Speed (L: Low M : Mid H: High) \square
\qquad (Can't be used together with K2)

Stroke (2.0: :200mm)
\qquad
\square
\qquad (Can't be used together wis tor positioning V: DC 24V (No mark: DC 12V) (Can't be installed onto the model with 50 mm stroke)

STANDARD SPECIFICATIONS

Model No.		Rated Thrust		Stroke	Speed	Voltage	Rated load current	Locked current
		N	\{kgft	mm	mm/s	v	A	A
LPFO10H0.5	LPF010H0.5 V	100	10.2	50	54	DC12	$\begin{gathered} 3.2 \\ (1.6) \end{gathered}$	$\begin{gathered} 16.7 \\ (7.5) \end{gathered}$
LPFO10H1.0	LPF010H1.0 V			100				
LPFO10H1.5	LPF010H1.5 V			150				
LPFO10H2.0	LPF010H2.0 V			200				
LPFO10H3.0	LPF010H3.0 V			300				
LPFO2OM0. 5	LPF020M0.5V	200	20.4	50	24		3.2(1.6)	$\begin{aligned} & 16.7 \\ & (7.5) \end{aligned}$
LPFO20M1.0	LPFO20M1.0V			100		or		
LPFO2OM1.5	LPF020M1.5V			150				
LPForom2.0	LPFozom2.0 V			200				
LPFOгомз.0	LPFогомз.0 V			300		DC24		
LPF040L0.5	LPF040L0.5V	400	40.8	50	15			$\begin{aligned} & 16.7 \\ & (7.5) \end{aligned}$
LPF040L1.0	LPF040L1.0 V			100				
LPFO40L1.5	LPF040L1.5V			150				
LPF040L2.0	LPF040L2.0 V			200				
LPF040L3.0	LPF040L3.0V			300				

Note: 1. Model No. should be selected in consideration of locked current.
2. Figures in () are shown as current for DC 24 V models.

MOTOR SPECIFICATIONS

Model No .	Voltage	Output	Rating
	v	w	
LPF0010H	12	29	5 Minutes
LPFO10HV	24		
LPF020M	12		
LPForom V	24		
LPF040L	12		
LPF040LV	24		

AMBIENT CONDITIONS

	Type	Outdoor type
	Ambient temp.	$-15^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
	Humidity	Less than 85\%
	Shock	Less than 19
	Altitude	Less than 1000 m
	Environment	Outdoor use

WIRING DIAGRAMS

When connecting the black wire to + and red wire to - , the rod goes forward

Use the following capacity of the relay DC 12V Model: 30A or greater (14 VDC) DC 24V Model: 30A or greater (28VDC)

Note: Diameter of electric cable should be greater than $2 \mathrm{~mm}^{2}$ when distance between motor \sim overload detecting unit and DC power source is within 3 m .

SELECTION AND INSTRUCTION FOR OPERATION

SELECTION

The following information is necessary for the selection of F series

1. Application
2. Required Thrust or Load
3. Stroke

N (kgf)
4. Speed
$\mathrm{mm} / \mathrm{sec}$
6. Voquency of operation
cycle/min

SELECTION PROCEDURE

1. Selection of

Select the suitable model number from the chart of standard specification (page 8) based on Thrust (N or kgf), Stroke (mm), Speed ($\mathrm{mm} / \mathrm{sec}$.) and so on.
2. Confirmation of special features

Frequency of operation must be kept at the following:
Allowable number of motor starts : 2 times $/$ min. or less

INSTRUCTION FOR OPERATION

1. Performance

Operative speed and motor current varies depending on actual load applied to the rod. Refer to the characteristics graph at page 10 for the detail.
F series Power Cylinders cannot be operate in synchronicity due to change of speed by applied load as a characteristic of DC motor. Life is series Power Cylinders cannot be operate in synctron
2. Power source

When using AC power source by transformer in stead of DC battery power source, capacity dropping of voltage. (AC adapter for output voltage DC 24 V is available as optional parts.)
3. Voltage

DC 12 V type $(10 \sim 14 \mathrm{~V})$ and $\mathrm{DC} 24 \mathrm{~V}(20 \sim 28 \mathrm{~V})$ are available. Operative speed may change depending on actual voltage.
4. Maintenance

Maintenance $\begin{aligned} & \text { Actuator portion and reducer portion are pre-greased. Greasing is not required. }\end{aligned}$
5. Press stopping operation

Press stopping is available with overload detecting unit. (overload detection unit must be used with Power Cylinder in this case) CAUTION: Press stopping is not available for the standard model because it doesn't have any overload detecting units.
6. Rod rotating prevention

It is necessary to prevent rod rotating because rotating torque as shown below applies to the rod when operating.
LPF010H: Max 0.14 Nm
LPFO20M: Max 0.28 Nm
LPFO4OL: Max 0.55 Nm
7. Frequency of operation

F series Power Cylinder is designed for low frequency of operation, however it can be also used for inching operation if frequency of operation is less than 10 times $/ \mathrm{min}$.
8. Outdoor use

Outdoor use F Series Power Cylinder itself is for outdoor use. Waterproof connector must be prepared and connected to the end of the motor cable.
9. Installation

When installing, do not apply radial force to the rod or external forces other than thrust force.
Power Cylinder should be connected with connecting pins to the equipment. Both clevis pin and end fitting pin should be also adjusted in phase.

CHARACTERISTICS GRAPH

${ }_{\text {LC12V }}^{\text {LPF010H }}$

 ambient temp.

DIMENSIONS

Basic type

Model No .		Thrust		$\begin{gathered} \text { Stroke } \\ \hline \mathrm{mm} \end{gathered}$	Dimensions			Approx. weight		
		A	XA							
		N	\{kgf\}		MIN.	MAX.				
LPF010H0.5	LPF010H0.5 V					50	162	220	270	1.0
LPF010H1.0	LPF010H1.0 V			100	212	270	370	1.2		
LPF010H1.5	LPF010H1.5 V	100	10.2	150	262	320	470	1.4		
LPF010H2.0	LPF010H2.0 V			200	312	370	570	1.6		
LPF010Н3.0	LPF010H3.0 V			300	412	480	780	2.0		
LPF020M0. 5	LPForom0.5 V			50	162	220	270	1.0		
LPFozom 1.0	LPFozom 1.0 V			100	212	270	370	1.2		
LPF020M1.5	LPFozom 1.5 V	200	20.4	150	262	320	470	1.4		
LPF020м2.0	LPFozom2.0 V			200	312	370	570	1.6		
LPFozom3.0	LPFozom3.0 V			300	412	480	780	2.0		
LPF040L0.5	LPF040LO. 5 V			50	162	220	270	1.0		
LPF040L1.0	LPF040L1.0 V			100	212	270	370	1.2		
LPF040L1.5	LPF040L1.5 V	400	40.8	150	262	320	470	1.4		
LPF040L2.0	LPF040L2.0 V			200	312	370	570	1.6		
LPF040L3.0	LPF040L3.0 V			300	412	480	780	2.0		

Note: In case of $D C 24 V$, symbol " V " is added to the end of the model number.

WITH LIMIT SWITCH FOR STROKE ADJUSTMENT

Note: Limit switch for stroke adjustment cannot be installed onto the model with 50 mm stroke.

WITH BELLOWS

WITH POSITION DETECTION UNIT

POSITION DETECTING UNIT

INTERNAL STRUCTURE

The following two built-in units are available for position detection.

1. INTERNAL LIMIT SWITCH FOR POSITION DETECTION

2. POTENTIOMETER

Note: Internal LS for position detection cannot be used together with potentiometer and vice versa.

SPECIFICATIONS OF POSITION DETECTING UNIT

1. INTERNAL LIMIT SWITCH FOR POSITION

DETECTION
For space saving or hard environments such as dust, corrosion etc.
Limit Switch Set-Up
Operate Power Cylinder to confirm direction of LS cam before installing the Power Cylinder.
2. Install the Power Cylinder, then adjust where the position of stroke is to be stopped or detected
3. Rotate LS cam, then fix it at the position where the micro switch works by tightening set screws taking into consideration the coasting distance of the stroke.

2. POTENTIOMETER

Potentiometer is a variable resister to output electrical signals by stroke.
Printed circuit board and stroke indication meter may be used
together with the potentiometer together with the potentiometer.
Resister is preset by model of P P
If the actuator rod is rotated before installation, the stroke position will be out of phase with potentiometer. After installation adjust the phase correctly

CONTROL OPTIONS

STROKE INDICATION METER

ER
Stroke is indicated by \%.
Model No.
Class
External appearance
Scale specification

CIRCUIT BOARD LPCO-D1 (100/110V 50/60Hz) LPCO-D2 (200/220V 50/60Hz) The circuit board transforms output signals of voltage
from the potentiometer to current. To adjust the meter, use the potentiometer on the printed
from circuit board.
If the meter is required to read 100% at minimum stroke, reverse wire 1 and wire 2 .

R CONTROLLER
The R Controller digitizes output signals of voltage from
potentiometer for stroke indication or strok available for indroke indication or stroke control. Scaling function is availabie for indicating actual stroke or stroke by \%. The R Controller can
be connected to the potentiometer directly.

Model No.	RX- $5455-$-NBAS (BURRUF)
Total resitance of input potenniometer	$0.8 \mathrm{~K} \Omega \sim 12 \mathrm{~K} \Omega$
Display	4 digits 7 segment LED
External appearance	Black Plastic
Comparative output	$\mathrm{HI}, \mathrm{LO}, \mathrm{GO}$ (Relay output)
Comparative set value	$0- \pm 9999$
Comparative output contact capacity	DC30V/1A AC250V/0.2A
Output contact configuration	CC for $\mathrm{H} 1, \mathrm{LO}$ and GO
Power source	$200 \mathrm{VAC} \pm 10 \% 50 / 60 \mathrm{~Hz}$

P.C.B. for the Meter Relay is the same as P.C.B. for Stroke Indication Meter. The Meter Relay controls stroke with built-in control panel.
Steel mounting panel is standard.
Aluminum mounting panel is also available.

Model No.	NRP-100 (TSURUGA)
Class	JIS C 1102 2.5 Class
External appearance	Black Plastic
Scale specilication	100\% at full stroke
Power source	AC 100/100, 200/220V 50/60 Hz
Input	Max. DC 100MA
Output contact configuration	1C for both High and Low (Refer to page 14)
Contact rating	AC250V3A ($\cos \phi=1$)

RELAY OPERATION
(NORMALLY CLOSED CONTACT)
The meter relay's wiring is the same as that of the stroke meter except that a separate power supply is necessary. Please use one of the other power source
Direct connection of the output contact (normally closed) with the LS stroke adjustment normally closed, contact is simple.

OVERLOAD DETECTION UNIT

Model No.		LPF-K12	LPF-K24
Applicable Power Cylinder		LPF010, LPF020, LPF040	
Power voltage		10 ~ 14VDC	20 ~ 28VDC
Rated current		3.7 ADC	1.8 ADC
Overload Protection function	Load current	7.0ADC (fixed)	4.OADC (fixed)
	Starting time	0.3sec. (fixed)	
	Overloading time	0.1 sec. or less (fixed)	
Operation specification		Switched on between F and + : forward Switched on both F-+, R - + : stop	
Ambient temp.		$-15 \sim 40^{\circ} \mathrm{C}$	
Ambient humidity		$45 \sim 85 \%$ RH (No condensation)	
Structure		Built in type for control box case: ABS	
Weight		0.2kg	

AC ADAPTER

Model No.		LPF-A24
Applicable Power Cylinder		LPF010, LPF020, LPF040
Applicable motor		24VDC 29w
Power source		100VAC 50/60Hz 200/220VAC $50 / 60 \mathrm{~Hz}$
Rated current		1.8 ADC
Overload Protection function	Load current	4.0ADC (fixed)
	Starting time	0.3sec. (fixed)
	Overloading time	less than 0.1 1sec. (fixed)
Operation specification		Switched on between F and Com : forward Switched on between R and Com : revers Switched on both $F-$ Com and R-Com: stop Swled onboh Com and Com: stop
Ambient temp.		$-15 \sim 40^{\circ} \mathrm{C}$
Ambient humidity		$45 \sim 85 \%$ RH (No condensation)
Structure		Built in type for control box case: SPCC
Weight		2.5 kg

STRUCTURE

TYPE (OVER LOAD PROTECTION DEVICE) SELECTION

There are 3 types of G series Power Cylinder. Select the type based on your application. Basic performances (Thrust, Speed and Stroke) are the same.

Basic type (LPGA)
This type has no Over Load Protection Device. It only has a brake for the brake motor. Please note that it can be used within their stroke. If you use it over the stroke, it may cause damage. Use LS for stroke control on your equipment or stroke adjusting. The LS unit is optional when you choose an LPGA type. We recommend using a Shock Relay or Shock Monitor for Overload Protection Device.
Slip Clutch type (LPGB). Only Parallel type is available
The internal slip clutch is activated as Overload Protection Device when the thrust load exceeds pre-set thrust. However the slip clutch will wea quickly through continuous slipping and smooth operation may not be possible. Therefore we recommend using it with a Shock Relay
Thrust Detection Spring Unit type (LPGC)
The LPGC type features an internal thrust detection system that combines pressurizing disk springs with a micro switch. This system will operate effectively in cases shown below,
Press sopping and stopping by own motor power at min/max stroke end.
2. To require electrical signal when overload working.

When shock load working, the spring unit can absorb it.

THRUST DETECTION SYSTEM

Compression Load (Extension)
Overload during extension
Overload during extension
Internal stopping at the forward stroke end

- Compression is required after stopping

Tension Load (Retraction)
Overload during retracting
Internal stopping at the backward stroke end

- Tension is required after stopping

INSTRUCTIONS

1. When using a rotary encoder or potentiometer

LPGC type Power Cylinder uses a spring unit. Therefore electrical signal of rotary encoder or potentiometer will have some electrical signal of rotary encoder or potentiometer wiit hav
lag due to bending of spring unit when the spring unit is operating. LPGB type Power Cylinder can use rotary encoder or potentiometer without any lag when the slip clutch is operating. LPGC type Power Cylinder can use them when the spring unit does not operate.
2. Overload working during Power Cylinder stopping LPGC type Power Cylinder cannot be used if the rod has to stop without any bending.
3. When you use LPGC type Power Cylinder for press/pull stopping he equipment the equipment streng, required must be more

STANDARD SPECIFICATIONS

Model	Speed	$\begin{aligned} & \text { Thrust } \\ & \mathrm{N} \\ & \text { \{ kgf \}} \end{aligned}$	Speed $\mathrm{mm} / \mathrm{sec}$ 50/60Hz	Motor kw	$\begin{array}{\|c} \text { Rod Travel per } \\ \text { manual popaled } \\ \text { shatt } e v o l u t i o n ~ \end{array}, \begin{gathered} \text { mm } \end{gathered}$	Stroke mm	Type		OVerload			Option					
									$\underset{\substack{\mathrm{O}}}{\substack{2}}$								
LPGA070 LPGB070 LPGC070	L	$\begin{gathered} 700 \\ \{71.4\} \end{gathered}$	25/30	0.1	1	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{0}$	\bigcirc	O	O	O	\bigcirc	\bigcirc
	M		75/90	0.2	3												
	H		100/120	0.4	4												
LPGA100 LPGB100 LPGC100	L		25/30	0.1	1	300400	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
	M	$\begin{aligned} & 1.00 \mathrm{k} \\ & \{102\} \end{aligned}$	75/90	0.2	3												
	H		100/120	0.4	4	500											
	U		200/240	0.4	8	500					0^{-3}						
LPGA150	L	$\begin{aligned} & 1.50 \mathrm{k} \\ & \{153\} \end{aligned}$	25/30	0.2	1	600	O	\bigcirc	O	0^{4}	O	\bigcirc	\bigcirc	0^{11}	\bigcirc	\bigcirc	${ }^{-}$
LPGB 150	M		75/90	0.4	3												
LPGC150	H		100/120	0.4	4	$\begin{aligned} & 1000 \\ & 1200 \end{aligned}$											
LPGA300	L	$\begin{aligned} & 3.00 \mathrm{k} \\ & \{306\} \end{aligned}$	25/30	0.4	1		\bigcirc	\bigcirc	\bigcirc	0^{+1}	0	\bigcirc	0	0^{1}	\bigcirc	0^{-1}	0^{2}
LPGB300	M		50/60	0.2	2												
LPGC300	H		$67 / 80$	0.4	2.67												
Le: LPGCO70H \& LPGC 100H : Motor 0.2kw												*1. Only Parallel type is available *2. LPGC type is not available. *3. Cannot do press stopping					

MOTOR SPECIFICATIONS

Type	
KW	Brake motor, Enclosed type, Self cooling type
Number of Poles	

AMBIENT CONDITIONS
Ambient Conditions Model Ambient temp. Humidity
$-15^{\circ} \mathrm{C}$ $40^{\circ} \mathrm{C}$
Shock 85%

1) In temperatures below zero, the characteristics of Power Cylinder (Ampere and speed) will change due to grease.
2) We recommend the Power Cylinder with bellows for dusty conditions.
Note. Tsubaki.

Paint: Munsell 5GY6/0.5 (Olive Gray)

MODEL No.

LPG C 300 LT $5 \mathrm{~V} \square$
Power Cylinder G Series
LPGA
LPGB (Only Parallel type is available)

LPGBC (Only Paraliel type is avaiab

Speed (L, M, H, U)

Type $\left.\begin{array}{c}\text { T: Straight } \\ \text { K: Paralle }\end{array}\right]$

SELECTION

REQUIRED INFORMATION FOR SELECTION

1. Application
2. Thrust $\begin{array}{lll}\text { N }\{\text { kgf } \\ \text { 3. Stroke }\end{array}$
3. Stroke
mm
mm / s
4. Frequency of operation Cycle/min

ROCEDURE

1. Select the type of Power Cylinder to be used based on the operating environment, load conditions ($\mathrm{N}\{\mathrm{kgff}$) and speed (mm / s).
2. Based on an application, select straight or parallel type. Also select the Overload protection device and options.
3. Confirm that the frequency of operation and working time rate ED is allowable.

Allowable Frequency of Operation \& Working time rate ED

Number of Motor Starts	Below 10 time/min
Working Time Rate ED (\%ED)	25

Working time rate ED is a rate of working time per 10 minute and to be calculated as below.

$$
\text { Working time rate ED }(\%)=\frac{\text { Working Time per cycle }}{\text { Workina Time per cvcle + stopina tim }}
$$

ESTIMATE LIFE TIME

Estimated life time of G series Power Cylinder is shown below.

- Based on brake operations: 2 million times (Need brake gap adjusting)
- Based on running distance of cylinder: 25 km

INERTIA LOAD FOR HORIZONTAL APPLICATIONS
Setting load of the overload protection device is from 140% to 200% against rated thrust of cylinder.
When starting with large inertia loads, there is possibility of not smooth operation because over protection device is activated. Refer
to the following table for limits. If inertia load is larger than the following table, please use the inverter to start slowly.

BRAKE HOLDING POWER

The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% the rated torque of the motor.

SELECTION 2

Select the type of Power Cylinder to be used based on the following selection criteria.

1. Setting Load of Overload protection device

- Slip Clutch (GB Type) : 150\% ~ 200\% against rated thrus
- Thrust detection spring unit (GC Type) : 140\% ~ 200% against rated thrust

2. Brake Holding Power

The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% of the rated torque of the motor.
3. Coasting and Stopping Accuracy

The position accuracy of the Power Cylinder varies depending upon speed and load inertia. Accuracy will improve as speed is lowered. Refer to the table shown below, and then set the limit switches taking into consideration expected coasting.

Coasting and Stopping Accuracy Table (Reference value when time lag of relay is 0.03 S)

Operation Model		Lititing (In case of 1 and 3)				Lowering (In case of 2 and 4)			
		50 Hz		60 Hz		50 Hz		60 Hz	
		Coasting	Soppingararay	Coasting	Soppigaxaray	Coasting	Spapigacuray	Coasting	Supporaxaray
LPGA070 LPGB070 LPGC070	L	6.9	± 0.4	10.0	± 0.5	10.6	± 0.4	14.9	± 0.5
	M	15.0	± 1.1	21.5	± 1.3	21.8	± 1.2	30.1	± 1.4
	H	15.4	± 1.4	21.7	± 1.7	23.7	± 1.5	32.7	± 1.8
	u	34.2	± 2.8	47.9	± 3.4	60.6	± 3.1	81.2	± 3.8
LPGA100 LPGB100 LPGC100	L	6.1	± 0.4	9.0	± 0.5	10.6	± 0.4	14.9	± 0.5
	M	13.8	± 1.1	19.8	± 1.3	22.1	± 1.2	30.5	± 1.4
	H	14.1	± 1.4	19.8	± 1.7	23.8	± 1.5	32.7	± 1.8
	u	32.0	± 2.8	45.0	± 3.4	66.9	± 3.1	88.2	± 3.8
LPGA150 LPGB150 LPGC150	L	4.6	± 0.4	6.6	± 0.5	7.1	± 0.4	9.8	± 0.5
	M	10.6	± 1.1	14.7	± 1.3	15.6	± 1.2	21.3	± 1.4
	H	13.7	± 1.4	19.0	± 1.7	21.8	± 1.6	30.0	± 1.9
LPGA300 LPGB300 LPGC300	L	3.3	± 0.4	4.6	± 0.5	5.1	± 0.4	6.9	± 0.5
	M	8.6	± 0.8	12.4	± 0.9	23.2	± 0.8	29.4	± 1.0
	H	9.4	± 1.0	13.1	± 1.2	19.0	± 1.1	25.0	± 1.3

* Values of the above table show paralle type Power Cylinder and the Power Cylinder with slip clu
is more than 10 N . Coaasting of another type of Power Cyyinder will be smaller than the above.

Coasting Distance:
Stopping Accuracy:
The position deviation for repeated stops. The above values include $\pm 25 \%$ time lag of relay and brake.

INSTALLATION \& MAINTENANC

INSTALLATION POSITION

installation
Use a trunnion or clevis mount when instaling. Install with either a male (I) or female (U) style end fititing
Apply grease to the Trunnion Pin and Bracket hole.

Trunnion mount

MANUAL CONTROL

To manually adjust the stroke, remove the load from the actuator,
release the brake of the brake motor then turn the manually operated
shaft of the motor with a handle. G: Remove any load f
releasing the brake

Regarding rod travel per manual operated shaft revolution, please refer to the table on page 17 .

ANTI ROD ROTATION

- For the thrust of the actuator rod there is a reaction torque

Generally, connection to the driven load prevents rotation

- If the actuator rod end piece is required to rotate freely or if the actuator rod is used to drive a rolling car or to pull a load with a wire
rope or chain, please use option M.

SIDE LOADS ON THE ROD

Install the device so that bending moments are not applied to the Install the device so that bending moments are not applied to the

SETTING THE EXTERNAL STROKE ADJUST LIMIT SWITCHES

1. Set the limit switches taking into consideration expected coasting 1. Set the limit switch
2. Set the limit switches so that the rod stops within XA dimension.
3. When using the Power Cylinder for multiple driving, use the limit switches attached on $\mathrm{min} / \mathrm{max}$ stroke end of each Powe
Cylinder

MAINTENANCE

Lubrication
The Power Cylinder is delivered with grease applied to the screw and can be used without greasing. For maintenance, recommended grease and lubrication cycle is as below.
Table 2 Recommended Grease

MOBIL	MOBILUX EPNo.2
SHELL	ALVANIA EP GREASE

Clevis mount

Table 3 Lubrication Cycle
Frequency of starts/day
$500 \sim 1000$
$100 \sim 500$
$10 \sim 200$

BALL SCREW LUBRICANT REPLACEMENT

Grease must be applied to the ball screw. Grease can be injected through the grease port of the cylinder after extending the actuator od to the forward stroke end.

Note: In actual operation, rod antirotation provision is required

WIRING

BRAKE MOTOR WIRING (WITH DC BRAKE)

Separate brake power supply

Note: 1. When you use separate brake power supply operation using 400 V class power source, please insulate wiring from the mid-tap. In this case, you have to input 200 V power to the DC module. If you do not have a 200 V power source, use a transformer to reduce voltage to 20V. Transtormer capacity needs than 90 VA (10.1 W 10.4 kW) and please cheak can be used without the voltage dropping MCB: AC 250V, 7A minimum
2. Do not insert a relay between the DC module and the brake coil. (Separate brake DC power supply is not available.)

* For more details, please refer to the instruction manual.

LIMIT SWITCHES SPECIFICATIONS

	Stroke adjustment Limit Switch (External)	Thrust detection Limit Switch	
Limit Switch	D4E-1B2ON (OMRON)	SS-5GL2D (OMRON)	
Current	$\mathrm{AC} 250 \mathrm{~V} 3 \mathrm{~A}(\cos \phi=0.4)$	$\mathrm{AC} 250 \mathrm{~V} 2 \mathrm{~A}(\cos \phi=0.4)$	
	$\begin{aligned} & \mathrm{NC}-\mathrm{Q} \\ & \mathrm{NO}-\mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	For Forward	For Backward
Contact configuration			

POSITION SENSOR UNIT

If position sensing is required, any or all of the following three built-in units may be used only with trunnion mount.

1. Internal position sensor limit switch (2 or 4 circuit)
2. Potentiometer
3. Rotary encoder
3.te: Clevis adate

Note: Clevis adapter cannot be attached when a Position Sensor Unit is used.

INTERNAL CONSTRUCTION OF POSITION SENSOR UNIT

INTERNAL WIRING OF THE POSITION LIMIT SWITCH UNIT

Use the internal terminal strip for the position sensor limit switch, potentiometer and rotary encoder wiring.

Option	Position Limit Switch (Internal) (K2, K4)									PotentiometerP			Rotary encoder					
Mark	LS1		LS2		LS3		LS4		сом									
Contact	a	b	a	b	a	b	a	b		1	2	3	1	2	z	5 V	ov	
Terminal number	18	17	5	6	16	15	7	8	4	1	2	3	9	10	11	12	13	14

POSITION DETECTION UNIT SPECIFICATIONS

POSITION DETECTION INTERNAL LS

 Use a Position detection internal LS when there is no space to installexternal stroke adjustment LS unit, or you want to use it combined
with a Potentiometer and/or a Rotary encoder. with a Potentiometer and/or a Rotary encoder.

- When the two are attached (K2)...The arran
ent is as for micro switches LS1 and LS2 in the drawing on the previous page.
- When four are attached (K4)The arrangement is as for micro switches LS1, LS2, LS3 and LS4
in the drawing on the previous
page.

LS settings

To adjust the operating position, first operate the G series Power Cylinder, then adjust the $L S$ cam and make the setting taking into
account the amount of coasting. Use a hexagonal wrench (1.5) to loosen the LS cam's two hexagonal socket set screws and to make the adjustment. (See the illustration on the right.)
*The limit switches are not set before shipping. Upon delivery, please set them into suit your equipment.

POTENTIOMETER

Potentiometer is a changeable resistor that can output electrical signals following the stroke of the Power Cylinder.
Use it combined with a Printed circuit board and Stroke display meter.
is rotated before installation, the stroke position will be out of phase with the potentiometer

Micro switch specification		
Model No.	OMRON D2VW-5L2A-1M	
Contact configuration	$\text { Black }{ }_{\text {White }}^{\text {LS1, } 3}{ }_{0}^{\text {Red }}$	$\underbrace{\text { Green }}_{0}{ }_{0}^{\text {LS2, } 4} \text { Yellow }$
Capacity	AC 250V 2A $(\cos \phi=0.4)$	

1. Please use the limit switches to make the origin setting.

External loads should not exceed allowable loss P.

POTENTIO-CONTROL OPTION

ROTARY ENCODER

The rotary encoder is ideal for controling the stroke in conjunction with a programmable controller.

Output pulse number	40P/R
Output wave form	90-degree phase difference, tw--phase wavérom + origin output
Output voltage	5 V Power Source"1" 4.5 V min. 000 0.5 Vmax
	$\begin{aligned} & \text { 12V Power Source " " } 1 \text { " } 11.0 \mathrm{~V} \text { min. } \\ & \text { " } 01.0 \mathrm{~V} \text { max. } \end{aligned}$
Output resistance	Load resistance 2.2k
Signal accuracy	Cycle error: less than 0.1 cycles
Power source	DC 5 to 12 V 60 mA
Frequency response	50 kHz
Light source	Light emititing diode
Light receiver	Phototransistor
Operating temperature	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$
Humidity	Less than 95\% relative humiditiy (RH), (With no condensation)
Vibration	55Hz max. oscillaion amplitude of 1.5 sm for 2 hours in direction XYZ.
Shock	50 G ($\mathrm{C}, \mathrm{Y}, \mathrm{Z}$ direction 3 times)

*Stated values are for the encoder only.

■ STROKE DISPLAY METER

Type	RM-80B (DC 100HA)
Class	JIS C 1102 2.5 class
Appearance	Frame/black
Scale specifications	Full stroke 100% display

\square PRINTED CIRCUIT BOARD

Please adjust the meter using the ADJUST controls located on the PCB. Do not get + and - confused on the stroke meter. To have the meter display 100% when at it's minimum value, switch terminals and 2 on the PCB.

- R CONTROLLER

The signal from the potentiometer located inside the G series Power Cylinder position detection mechanism is digitized for display and the actual stroke and the degree of extension (\%). Direct connection of the R controller to the potentiometer is possible.

■ METER RELAY

Stroke adjustment can be easily performed from the control panel (The steel panel attachment is standard. Please indicate if an aluminum panel is desired.)

Note: When using a TC unit, etc. (4 to 20 mA output), please indicate,
'For 4 to 20 mA output.'

Meter Relay Specifications	
Model No.	NRP-100 (TSURUGA)
Level	TISC 1102 2.5
External appearance	Black Plastic
Scale specification	100\% at full stroke
Power source	AC100/100, 200/220V $50 / 60 \mathrm{~Hz}$
Input	DC 100यA max.
Output contact contiguration	1C for both high and low (refer to page 25)
Contact rating	AC250V3A (cos $\phi=1$)

The G series Power Cylinder comes equipped with a potentiometer. Use caution when installing, if the screw is turned, stroke and phase settings will be thrown off. Using the limit switches, adjust the minimum and maximum application stroke setting before using the meter relay.

PRINTED CIRCUIT BOARD

Same as the stroke meter PCB

RELAY OPERATION

(NORMALLY CLOSED CONTACT)

The meter relay's wiring is the same as that of the stroke meter except that a separate power supply is necessary. Please use one of (normally closed) with the LS stroke adjustment normally closed contact is simple.

$$
\begin{aligned}
& \text { ov } 71 / 1{ }^{2} \\
& \left.{ }_{\text {off }}^{\text {on }} 71 / 1 / 1 / 1 / 1 / 1 / 1\right] \\
& \text { ov } \quad 711111111117
\end{aligned}
$$

SHOCK RELAY
We recommend a Shock Relay as the electric safety device for GB type Power Cylinder.

ROTARY ENCODER OPTIONS

I PULSE COUNTER

This counter is capable of displaying the pulse count from the rotary encoder in addition to sending relay output. With its prescale function, the atual amount of movement can also be displayed. For stroke control and other uses, please use it in conjunction with a self-ratetecting circuit. The display, and internal counter data, is backed up with internal batteries so that even when power is cut data is not lost.*
*If there is a power failure, counting is not possible, so do not attempt to move the jack. We recommend that external stroke adjusting limit switches also be used.

Model No.	OMRON HTCS-CW (\pm area type)
Type	Preset counter
Protective construction	IP54F (panel display section)
Prescale function	Yes (0.001 to 99.999)
Display type	Back-lit, 7-segment LCD
Rated voltage	AC 100 to 240V ($50 / 60 \mathrm{~Hz}$)
Power consumption	Approx. 6.6 VVA (at AC 250V, 5 OHz)
Control output	Contact: AC 250V 3 ((cos $\phi=0.8$ to 1)
External power supply	DC 12V $\pm 10 \% 100 \mathrm{~mA}$ (less than 5% ripple)
Operating temperature	-10 to $+55^{\circ} \mathrm{C}$ (Not to be frozen)
Storage temperature	-25 to $+65^{\circ} \mathrm{C}$ (Not to be frozen)
Humidity	35 to 80\% RH

REFERENCE CIRCUITS

SINGLE ACTION CIRCUITS (Separate brake power supply)

LSO1 : Stroke adjusting LS for forward S02 : Stroke adiusting LS for reverse S12 : Thrust detection LS for for reverse
TWO MACHINES MULTIPLE DRIVE CIRCUIT (Separate brake power supply

S101 : Stroke adiusting LS for forward for LP1 LS102: Stroke adjusting LS for reverse for LP1 LS201 : Stroke adiusting LS for forward for LP2
S201 Stroke adjusting LS for reverse for LP2 LS111: Thrust detection LS for forward fo LP1 LS112: Thrust detection LS for reverse for LP1 LS212: Thrust detection LS for reverse for LP2

DIMENSIONS STRAIGHT TYPE

LPGC070~300■T (WITH THRUST DETECTION UNIT)

Model		Speed	Type	Stroke	A						ons in mm	
		XA				хв		Approx. Weight (kg)				
		MIN				max	MIN	max	LPGA	LPGC		
LPGA LPGC	$\begin{aligned} & 070 \\ & 100 \end{aligned}$		$\begin{aligned} & L \\ & M \\ & H \\ & H \\ & U \end{aligned}$	T	100	178	243	343	65	165	14	18
					200	278	343	543	65	265	15	19
		300			378	443	743	65	365	16	21	
		400			478	543	943	65	465	18	22	
		500			578	643	1143	65	565	19	23	
	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { L } \\ & M \\ & \mathrm{H} \end{aligned}$	600		678	743	1343	65	665	20	24	
			800		878	963	1763	85	885	22	26	
			1000		1078	1183	2183	105	1105	24	28	
			1200		1278	1403	2603	125	1325	27	31	

Note: Mechanical Stroke has a room for $3 \sim 8 \mathrm{~mm}$ at each stroke end against XA dimensions.

OPTION

STROKE ADJUSTING LS BELLOWS (-J$)$

TRUNNION MOUNTING ADAPTOR (LPGA300-T)
I TYPE END FITTING (LPGA300-I)

DIMENSIONS PARALLEL TYPE

LPGA070~300■K (BASIC MODEL)

LPGC070~300 $\square \mathrm{K}$ (WITH THRUST DETECTION UNIT)

Model		Speed	Type	Stroke	A	XA		XB		Approx. Weight (kg)			
		MIN				MAX	MIN	MAX	LPGA	LPGB	LPGC		
LPGA LPGB LPGC			L	k	100	178	243	343	65	165	18	18	23
	070	m	200		278	343	543	65	265	19	19	24	
	100	H	300		378	443	743	65	365	21	21	25	
		u	400		478	543	943	65	465	22	22	26	
	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{aligned} & L \\ & M \\ & M \\ & H \end{aligned}$	500		578	643	1143	65	565	23	23	27	
			600		678	743	1343	65	665	24	24	28	
			800		878	963	1763	85	885	26	26	31	
			1000		1078	1183	2183	105	1105	28	28	33	
			1200		1278	1403	2603	125	1325	31	31	35	

Note: Mechanical Stroke has a room for $3 \sim 8 \mathrm{~mm}$ at each stroke end against XA dimensions.

OPTION

STROKE ADJUSTING LS

TRUNNION MOUNTING
ADAPTOR (LPGA300-T)

I TYPE END FITTING (LPGA300-I)

CLEVIS MOUNTING ADAPTOR

 (LPTB500-C) (LPTB500-C)\square

ADJUSTMENT FOR EXTERNAL LS AND VARIATIONS OF INSTALLATION

1. StANDARD Installation

Parallel

2. ADJUSTMENT METHOD

G series Power Cylinder has a room from 3 to 8 mm at both stroke end as mechanical stroke. However it should be used within XA
dimensions. Please adjust the limit switches to operate within XA dimensions. If you operate over XA dimensions, The LS striker will come off from LS guide rail. When you adjust limit switches, please adjust and fix each limit switch to avoid lag of relative position between Power Cylinder body and LS guide rail

1. Loosen set screw for LS flange (A) and LS guide rail (B)
red position.
2. Tighten the set screw for LS guide rail (B) first.
3. Tighten the set screw for LS flange (A) without twist between LS Tighten the set screw

4. VARIATION OF INSTALLATION

4. INSTALLATION OF EXTERNAL LS

- Tsubaki has an instalation manual for changing direction and quantity of LS. Please consult Tsubaki.
- The direction of LS installation is free. Do not allow dust or mud on the LS guide rail for smooth operation of LS striker.

VARIATION OF DIRECTION AND POSITION OF MOTOR TERMINAL BOX

DIRECTION OF MOTOR TERMINAL BOX

Direction of the motor terminal box can installed as one of the four (4) directions shown below.
It can be easily changed by the user.

1. Remove the lid of the terminal box.
2. Remove the 2 screws tightening the terminal. 3. Lift the terminal without detaching the wiring to the motor and brake. Then take off the 4 screws fixing the terminal box
3. Rotate the terminal box for the required direction and fix.
4. Install terminal.
5. Wistal terminal.
6. Wire the cable from the power source and replace the lid on the terminal box

When you fix the terminal box, please check that the rubber packing is inserted correctly and firmly tighten the screw.

POSITION OF MOTOR TERMINAL BOX
Position of the motor terminal box can be rotated at 90 degrees intervals as shown below.
However, please do not perform this yourself. Please inform Tsubaki of the desired position when ordering

TB type (Built-in Slip Clutch)

TC type (Built-in Thrust Detection System)

MOTOR GEAR BOX Brake motor, spring close type for outdoor use. Optional remote control devices can be fitted. The manual handle shaft is at the end of the gear box

TB type Ball screw and nut
S. rod can be fitted for stroke adiustment. For outdoor use

TC type

C type -_A thrust detection spring unit is built in as a safety device for overloading and press contact stopping.

SPECIFICATIONS

TB and TC type have the same basic function (Thrust, Speed and Stroke) and have the following features for thrust limiting mechanism.

- TB type: Slip clutch type (economical)

An internal slip clutch is built-in as an overload protection device. The slip clutch is activated when the thrust load exceeds the prese
reviden when overloading or overrunning at the stroke end.
*Tsubaki Shock Relay is recon
Tsubaki Shock Relay is recommended when the electrical signal for overloading is required for $T B$ type.

- TC type: Thrust detection unit type

An internal thrust detection system consisting of two types of disk
spring with different spring rate and cam operated limit switches provides the electrical signal to stop the motor when thrust load provides the electrical signal to stop the motor when thrust load
exceeds the preset level. (For thrust rating 6 tons and over, only one type of spring is used) This unique system is suitable for the following even for high-speed operation.
) Press (or pull) stopping
3) Electrical signal is the mechanical stroke end
4) In case overload acts to the POWER CYLINDER when stopping (Internal springs absorb the shock load)

TC TYPE THRUST DETECTION SYSTEM

INSTRUCTIONS

When using a rotary encoder or potentiometer. LPTC type Power Cylinder uses a spring unit. Therefore, electrical signal of rotary encoder or potentiometer will have some lag due to bending of spring unit when the spring unit is perating. LPTB type Power Cylinder can use rotary encoder or potentiometer without any lag when the slip clutch is operating,
LPTC type Power Cylinder can use them when the spring unit does not operate.
2. Overload working during Power Cylinder stopping LPTC type Power Cylinder cannot be used if the rod has to keep the same position when stopping.
3. When you use LPTC type Power Cylinder for press/pull stopping, the equipment strength required must be more than 250% against the rated thrust of the Power Cylinder.

SPECIFICATIONS

STANDARD SPECIFICATIONS

Model	Thrust		Speed 50/60Hz ($\mathrm{mm} / \mathrm{sec}$.)	$\begin{aligned} & \text { Motor } \\ & (\mathrm{kWW}) \end{aligned}$	$\begin{gathered} \text { Stroke } \\ (\mathrm{mm}) \end{gathered}$
	N	\|kgf)			
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & 250 \text { L } \\ \text { LPTC } & \text { M } \\ & H \\ \hline \end{array}$	2.45k	${ }^{\text {2250) }}$	$\begin{gathered} 12.5 / 15 \\ 25 / 30 \\ 50 / 60 \\ 100 / 120 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	200~600
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & 500 \\ \text { LPTC } & \text { M } \\ & H \\ \hline \end{array}$	4.90k	(500)	$\begin{gathered} 12.5 / 15 \\ 25 / 30 \\ 50 / 60 \\ 100 / 120 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.4 \\ & 0.45 \\ & 0.75 \end{aligned}$	200~800
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & 1000 \text { L } \\ \text { LPTC } & \mathrm{M} \\ & \mathrm{H} \end{array}$	9.80k	\{1000)	$\begin{gathered} 12.5 / 115 \\ 25 / 30 \\ 50 / 60 \\ 100 / 120 \\ \hline \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.75 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \sim 800 \\ * 1000 \end{gathered}$
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & 2000 \\ \text { LPTC } & \mathrm{M} \\ & \mathrm{H} \\ \hline \end{array}$	19.6k	\{2000\}	$\begin{aligned} & 12.5 / 15 \\ & 25 / 30 \\ & 50 / 60 \\ & 75 / 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.75 \\ & 1.55 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{gathered} 200 \sim 800 \\ \begin{array}{c} * 1000 \\ { }^{*} 1200 \end{array} \end{gathered}$
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & \text { L } \\ \text { LPTC } & 4000 \\ & \mathrm{M} \\ \hline \end{array}$	39.2k	\{4000)	$\begin{aligned} & 9 / 11 \\ & 250130 \\ & 355 / 42 \\ & 60 / 72 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.5 \\ & 2.2 \\ & 3.7 \\ & \hline \end{aligned}$	$\underset{* 1500}{\substack{200 \sim 1200}}$
$\begin{array}{lr} & \mathrm{S} \\ \text { LPTB } & \text { LPTB } \\ \text { LPTC } & 6000 \\ & \mathrm{M} \\ \hline \end{array}$	58.8k	(6000)	$\begin{aligned} & \hline 6.3 / 7.6 \\ & 17.5 / 21 \\ & 25 / 30 \\ & 42 / 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.5 \\ & 2.2 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ \times 1500 \\ \times 150 \end{array}$
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & \text { S } \\ \text { LPTC } & 8000 \\ & \mathrm{M} \\ & \mathrm{H} \end{array}$	78.4k	(8000)	$10 / 12$ $20 / 24$ $30 / 36$ $43 / 52$	$\begin{aligned} & 1.5 \\ & 2.2 \\ & 3.7 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ 1500 \\ \hline \end{array}$
$\begin{array}{lr} \hline & \text { S } \\ \text { LPTB } & \\ \text { LPTC } & 12000 \\ & \mathrm{M} \\ & \mathrm{H} \end{array}$	118k	\{12000)	$\begin{gathered} 10 / 12 \\ 18.5 / 22 \\ 30 / 36 \end{gathered}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 5.5 \end{aligned}$	$\begin{gathered} 500 \\ 1000 \\ 1500 \\ 1500 \end{gathered}$
$\begin{array}{lr} & \text { S } \\ \text { LPTB } & \text { S } \\ \text { LPTC } & 16000 \\ & \mathrm{M} \\ & \mathrm{H} \end{array}$	157k	\{16000)	$\begin{aligned} & 14.5117 .5 \\ & 20124 \\ & 31 / 37 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.5 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ 1500 \\ 2000 \\ \hline \end{array}$
$\begin{array}{lr} \hline & \mathrm{S} \\ \text { LPTB } \\ \text { LPTC } & 32000 \\ & \mathrm{~L} \\ & \mathrm{H} \\ \hline \end{array}$	314k	(32000)	$\begin{aligned} & \begin{array}{l} 10 / 12 \\ 15 / 18 \\ 20 / 24 \end{array} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \\ & 11 \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ 1500 \\ 2000 \\ \hline \end{array}$

MOTOR SPECIFICATIONS

$$
\begin{aligned}
& \text { Brake Motor, Enclosed type, Self-cooling type } \\
& \text { 4P 200V/2000//220V } 5 / / 606 / 60 \mathrm{~Hz} \\
& \text { Insulation class E, } 30 \text { min. rating for use (IP54) } \\
& \text { Paint: Munsell } 5 \mathrm{GY} 6 / 0.5
\end{aligned}
$$

Ambient Conditions

Ambient temp.	$-15^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
Humidity	Below 85%
Shock	Below 1 G
Altitude	Less than 1000 m
Outdoor use	

MODEL No.

SELECTION PROCEDURE

Application data:

1. Power Cylinder type being considered and method of operation
2. Thrust and inertia load
3. Stroke
4. Speed
. Speed

TYPE SELECTION

- Select the type of cylinder to be used based on the operating
environment, load condition and the following selection criteria.
SELECTION CRITERIA: TB and TC Power Cylinders have the
same basic features; thrust, speed, stroke, load, and integral motor.
same basic features; thrust, speed, stroke, load, and integral motor
The TB type is an economical, light weight, positive displacement inear actuator with slip clutch satety protection. This actuator sh
be considered when coupled with optional position feedback if position accuracy is critical.
The TC type provides thrust detection in tension and compression of the Power Cylinder at $150 \sim 200 \%$ of rated load without damage to the Power Cylinder (providing that power source is coupled to thrust detection circuit). The unique thrust detection mechanism employed also provides for moderate shock loading of the unit without damage This actuator should be considered for applications that may see hock loads, require electronic overload signal, or when press/pul stopping is required. (See Table 1).
Table 1 (For high frequency use of thrust detection unit)

$\begin{aligned} & \hline \text { TYPE } \\ & \hline \text { SPEED } \end{aligned}$	LPTC250-LPTC4000			LPTC6000-LPTC32000		
	S, L	M	H	S, L	M	H
TOTAL STOP CYCLES ($\times 10^{4}$)	30	10	5	10	3	1
Note: 1. When press (or pull) stopping is being used. It is recommended that you use external wiring for the brake. (If high or medium speeds are being used, the wiring must be made separately). 2. If the values in Table 1 will be exceeded, we recommend that stopping be initiated using external limit switches. 3. When press (or pull) stopping are required, please ensure that the strength of the equipment being used with the power cylinder exceeds 250% of the maximum thrust produced.						

MODEL SELECTION

1. Calculate annual running distance.

Annual Running Distance (km) =
Actual Load Stroke $(\mathrm{m}) \times$ Cycles/Day \times
Operating Days/Year
characteristics and the annual running distance of the Power Cylinder.
3. Multiply the thrust and the load service factors.

Using the compensated thrust, stroke, speed and number of cycles, select the appropriate model for your application from the standard models.

Table 2 Service Factor

Characteristics of the load	Application	Thrust (kgf)	Annual running distance (km)		
		~LP16000	$\sim 50 \mathrm{~km}$	$\sim 100 \mathrm{~km}$	$\sim 150 \mathrm{~km}$
		LP32000	$\sim 25 \mathrm{~km}$	$\sim 50 \mathrm{~km}$	$\sim 75 \mathrm{~km}$
Uniform load	Opening/losing for damper, valve, etc.		1.0	1.3	1.5
Low inertia load					
Medium shock	Opening/closing for hopper gate		1.3	1.7	2.0
Medium inertia load	Loading/unloading application, lifter, etc.				
Heavy shock/with vibration	Buffer for belt conveyors		1.5	2.0	2.3
High inertia load			1.5	2.0	2.3

CONFIRMATION OF THE SPECIAL FEATURES

1. Ensure that the frequency of use is kept below the allowable
value listed in Table 3. The allowed operating frequency depends
on the starting frequency and the work rate and must be within
the range specified in the table below. The duty cycle is calculated with the following formula.

Wor
Working time rate ED (\%) = Working Time per cycle
2. The accuracy of positioning depends upon the stopping method employed.
3. If multiple driving is required, refer to page 30 .

If TC Type is specified be sure total press stops do not exceed values shown in Table 1 page 26 .

Table 3 Allowable Frequency of Operation

Model	LPTB - LPTC									
	$\begin{aligned} & 250 \mathrm{~s} \\ & \begin{array}{l} 250 L \\ 5000 \end{array} \end{aligned}$	$\begin{aligned} & 250 \mathrm{M} \\ & 500 \mathrm{~L} \\ & 1000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 250 \mathrm{H} \\ & 500 \mathrm{M} \\ & 1000 \mathrm{~L} \\ & 2000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 500 \mathrm{H} \\ & 1000 \mathrm{M} \\ & 2000 \mathrm{~L} \\ & 4000 \mathrm{~S} \\ & 60000 \end{aligned}$	1000 H 200 M 4000 L 6000 L 8000 S	2000H 400 M 600 M 8000 L 12000 L	$\begin{aligned} & 4000 \mathrm{H} \\ & 6000 \mathrm{H} \\ & 88000 \mathrm{M} \\ & 12000 \mathrm{M} \\ & 160000 \mathrm{l} \end{aligned}$	8000H 12000M 32000L	16000 H 32000 M 32000M	32000 H
Number of motor starts (times/min.)	5	5	5	4	4	4	4	3	3	2
Working time rate ED (\%)	less than 25\%									

Note: The operating frequency is set by the motor temperature limit not the Power Cylinder. Consult factory if number of starts is greater than listed above.

INERTIA LOAD FOR HORIZONTAL APPLICATIONS

Setting load of the overload protection device is from 150% to 200% against rated thrust of cylinder.
When starting with large inertia loads, there is possibility of not
smooth operation because over protection device is activated. Refer Table 4 for the limits. Slow Speed Range Power Cylinders are not mited by inertia.

The internal thrust detection mechanisms are not user adjustable and may vary $\pm 15 \%$.

$$
\begin{aligned}
& \text { Car weight } \quad: m \\
& \text { Coefficient of friction }: \quad: \mu \\
& \text { Car running resistance }: F=\mu m \leq \text { Rated Thrust }
\end{aligned}
$$

Table 4 Allowable car weight, considering inertia

Model	$\begin{aligned} & \text { LPTB : } 250 \\ & \text { LPTC } \end{aligned}$			$\begin{aligned} & \text { LPTB : } 50 \\ & \text { LPTC } \end{aligned}$			$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned} 1000$			$\begin{aligned} & \text { LPTB : } \\ & \text { LPTC } 2000 \end{aligned}$			$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } 4000 \end{aligned}$		
	L	M	H	L	M	H	L	M	H	L	M	H	L	M	H
Allowable loadkg	4300	1500	850	5500	2650	950	10000	3200	2200	12300	8400	7100	31800	26000	16800
Model	$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned} 6000$			$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned} 12000$			$\begin{aligned} & \text { LPTB } \\ & \text { LPTC : } 16000 \end{aligned}$			$\begin{aligned} & \text { LPTB : } 32000 \\ & \text { LPTC } \end{aligned}$		
	L	M	H	L	M	H	L	M	H	L	M	H	L	M	H
Allowable load $\mathrm{kg} \times 10^{3}$	73	60	39	106	69	86	271	158	200	274	344	189	368	761	860

SELECTION EXAMPLE

The following is an example of the procedure to be followed when selecting a Power Cylinder
Application Data is required before selecting an individual Power Cylinder.
When data is available - follow the selection procedure shown on pages 34 and 35 .

APPLICATION DATA

1. Type of application: Damper opening/closing (2 mid-point stops, tension and compression press stopping).
2. Required Thrust: $1,300 \mathrm{kgf}$.
3. Stroke: $600 \mathrm{~mm}(0.6 \mathrm{~m})$
4. Speed: 600 mm in about 20 secs $(30 \mathrm{~mm} / \mathrm{sec})$.
5. Frequency of use: 1 cycle/10 mins. (6 cycles/hr.)
6. Operating time: $10 \mathrm{hrs} /$ day, 250 days/year, 5 years

Design life: 5 years
8. Load characteristics: Forward and reverse loading, uniform load
9. Operating conditions: Outdoors, dusty, temp. range $0^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
10. Power: $220 \mathrm{~V}, 60 \mathrm{~Hz}-3 \mathrm{PH}$

SELECTION OF POWER CYLINDER

1. Type Selection: Press stopping with internal Limit switch

> Press stopping with internal Limit switch. The TC type Power Cylinder meets these requirements.
2. Select the Size of Power Cylinder:
a) Determine Service Factor: Calculate annual running distance $\frac{2 \text { Strokes }}{\text { Cycle }} \times \frac{0.6 \text { Meters }}{\text { Stroke }} \times \frac{6 \text { Cycles }}{\text { Hour }} \times \frac{10 \text { Hours }}{\text { Day }} \times \frac{250 \text { Days }}{\text { Yr }}=18 \mathrm{~km}$
b) Minimum thrust rating $=$ service factor \times required thrust of Power Cylinder Min. Thrust Rating $=1.3 \times 1300 \mathrm{kgf}=1690 \mathrm{kgf}$
Model Selection : LPTC 2000 L6 K2 J
Two position Limit Switch $-\square_{\text {bellows }}$
(mid-point stops)
3. Confirmation of Choice: Based on allowed operating frequency and total press stops.

Operating Frequency
$\begin{aligned} & \text { Starting frequency: } \\ & \text { Working time rate }=\left[\left(\frac{600 \mathrm{~mm} \times 2}{30 \mathrm{~mm} / \mathrm{sec}}\right) \div(10 \mathrm{Min} \times 60 \mathrm{Sec} / \mathrm{Min})\right] \times 100 \%=6.7 \%<25 \% \\ & 10 \text { Min. }\end{aligned} \frac{4 \text { times }}{\text { Min. }}$
Total Press Stops $=\frac{2 \text { Stops }}{\text { Cycle }} \times \frac{6 \text { Cycles }}{\text { Hour }} \times \frac{10 \text { Hours }}{\text { Day }} \times \frac{250 \text { Days }}{\text { Year }} \times 5$ Years
$=15 \times 10^{4}<30 \times 10^{4}$

BRAKE HOLDING POWER

The load holding strength of the brake exceeds the rated thrust of the Power Cylinder so loads can be safely and securely held by the brake. This holding power is generated by the motor brake. While in operation the brake uses spring power and generates holding power that exceeds 150% of he rated torque of the moto
Caution: Overload of TB Power Cylinder will result in loss of brake - unit may free-fall.

BRAKE STOPPING

Using either limit switches or push button control, multiple positioning including mid-point, upper and lower point stopping are possible. Stopping accuracy and coasting distance depend upon the load size and drive speed. When accurate positioning is required, it is recommended that either
low operating speed be used or that the brake be wired separately from the motor. When setting the limit switches, please consider the over travel of the rod.
see Table 5)

COASTING AND STOPPING ACCURACY

he following chart provides coasting and stopping data for the T-Series at full load.
The amount of stroke traveled between the power shut-off and until the unit completely stops B: Stopping Accuracy in mm :
The position deviation for repeated stops.
Table 5 Coasting and Stopping Accuracy Table

Model		Standard Braking (Pre-wiring)				Brake wired separately			
		Lititing		Lowering		Lititing		Lowering	
		A	B	A	B	A	B	A	B
$\begin{aligned} & \text { LPTB } \\ & \text { LPTT } \end{aligned}$	s	2.2	± 0.4	3.0	± 0.6	1.9	± 0.3	2.7	± 0.5
	L	4.3	± 0.8	8.5	± 2.1	3.7	± 0.6	7.8	± 1.9
	M	6.9	± 1.4	12.4	± 3.2	6.0	± 1.1	11.4	± 2.9
	н	13.7	± 2.7	27.3	± 7.3	12.5	± 2.4	26.1	± 6.9
$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned}$	S	2.1	± 0.4	3.7	± 0.9	1.8	± 0.3	3.3	± 0.8
	L	3.6	± 0.7	6.1	± 1.6	3.1	± 0.6	5.6	± 1.4
	M	6.5	± 1.3	11.4	± 2.9	5.9	± 1.2	10.8	± 2.7
	H	12.7	± 2.7	22.3	± 5.9	10.2	± 2.0	19.6	± 5.2
$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned}$	S	1.7	± 0.4	2.8	± 0.7	1.5	± 0.3	2.5	± 0.6
	L	3.2	± 0.7	5.4	± 1.4	2.9	± 0.6	5.1	± 1.2
	M	6.3	± 1.4	10.2	± 2.6	5.0	± 1.0	8.8	± 2.2
	H	15.5	± 3.3	27.6	± 7.7	10.4	± 2.0	22.1	± 6.3
$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned}$	S	1.7	± 0.4	2.7	± 0.7	1.5	± 0.3	2.5	± 0.6
	L	3.2	± 0.7	5.0	± 1.3	2.5	± 0.5	4.2	± 1.0
	м	7.7	± 1.7	12.7	± 3.4	5.2	± 1.0	10.0	± 2.7
	H	13.3	± 2.9	22.8	± 6.4	8.0	± 1.6	17.1	± 4.9
LPTBLPTC	s	1.2	± 0.3	1.6	± 0.4	0.9	± 0.2	1.3	± 0.3
	L	3.8	± 0.8	5.9	± 1.5	2.5	± 0.5	4.5	± 1.1
	M	6.4	± 1.4	9.9	± 2.6	3.8	± 0.8	7.2	± 1.9
	н	10.9	± 2.4	16.9	± 4.4	6.6	± 1.3	12.3	± 3.2
$\begin{aligned} & \text { LPTB } \\ & \text { LPTC } \end{aligned}$	s	0.6	± 0.2	0.8	± 0.2	0.5	± 0.1	0.6	± 0.1
	L	2.7	± 0.6	4.4	± 1.2	1.8	± 0.4	3.4	± 0.9
	M	4.5	± 1.0	7.4	± 2.0	2.7	± 0.5	5.5	± 1.5
	н	7.6	± 1.7	12.2	± 3.2	4.6	± 0.9	9.0	± 2.4
LPTBLPTC	s	1.9	± 0.4	2.9	± 0.7	1.3	± 0.2	2.2	± 0.5
	L	3.6	± 0.8	5.8	± 1.6	2.2	± 0.4	4.3	± 1.1
	M	5.6	± 1.2	8.4	± 2.1	3.4	± 0.7	6.1	± 1.5
	H	8.5	± 1.8	12.0	± 2.8	5.4	± 1.0	8.7	± 2.0
$\begin{aligned} & \text { LPTB } \\ & \text { LPTT } \end{aligned}$	L	2.1	± 0.5	3.0	± 0.8	1.3	± 0.2	2.2	± 0.5
	M	3.5	± 0.8	5.1	$\pm \pm .3$	2.1	± 0.4	3.6	± 0.9
	H	5.7	± 1.2	8.2	± 1.9	3.6	± 0.7	5.9	± 1.4
	L	2.8	± 0.6	4.0	± 1.0	1.7	± 0.3	2.8	± 0.7
	M	4.1	± 0.9	5.6	± 1.3	2.6	± 0.5	4.0	± 0.9
	H	6.1	± 1.3	11.0	± 3.0	3.9	± 0.7	8.6	± 2.4
	L	2.1	± 0.5	2.8	± 0.7	1.3	± 0.3	2.0	± 0.4
LPTC	M	3.1	± 0.7	5.4	± 1.4	2.0	± 0.4	4.2	± 1.1
	H	4.3	± 0.9	6.1	± 1.4	2.7	± 0.5	4.4	± 1.0

INSTALLATION

MULTIPLE DRIVING

As illustrated in Diagram 1, multiple driving is possible to distribute oad in lifting and lowering operations.
This arrangement results in low speed variation. When making yor selection, please use the formula to the below.

Thrust per cylinder $=\frac{\text { Required thrust (kgf) }}{\text { Number of Power Cylinders }}$
Table 6 Multi-Factor

Power Cylinders being used (units)	2	3	4	5	6
Load Sharing Factor	0.8	0.7	0.6	0.55	0.5

ACCURACY IN MULTIPLE DRIVING

Speed change due to load variation is up to 5% for each Power
Cylinder. The possible stopping inaccuracies are listed in Table 5 , page 29.

CONTROL

When starting, connect power to all motors at the same time.
When stopping, use the limit switches attached to each device Avoid using one limit switch to control all of the devices as error will accumulate. (see Dia. 1)

SIDE AND ECCENTRIC LOADING
Do not apply eccentric or side loading to the cylinder
When eccentric or side loading is present, install the device to insure that no direct moment is applied to the cylinder rod.
Diagram 2

INSTALLATION POSITION

INSTALLATION METHOD: Use a trunnion or clevis mount when installing. Install with either a male (I) or female (U) style end fitting.

```
Trunnion moun
```


Refer to the available options listed on pages 51

MANUAL CONTROL

To manually adiust the stroke, remove the load from the actuato release the brake of the brake motor then turn the shaft of the moto release the brake of the brake motor then turn the shaft of the moto
pinion on the gear box with a wrench or a socket wrench. WARNING: Remove any load from the actuator rod before releasing the brake.

ROD ANTI ROTATION

- Accompanying the thrust of the actuator rod there is a reaction
- Accompanyingeraly, connection to the driven load prevents rotation
- If the actuator rod end piece is required to rotate freely or if the actuator rod is used to drive a rolling car or to pull a load with a wire rope or chain please contact Tsubaki.

SIDE LOADS ON THE ROD

- Install the device so that bending moments are not applied to the - Instal the device so that bending moments are not applied to the
actuator rod. Permanent damage to the Power Cylinder may result.

SETting the external stroke AdJustment LIMIT SWITCHES

- Refer to Table 5 page 37, then set the limit switches based on the expected coasting.
- When the full nominal stroke is to be used, set the limit switches so that stopping occurs within the XA dimension limitt taking in to
consideration coasting (XA dimension see pages 47-50).
switches on each cylinder to control the upper and lower stroke limits.

MAINTENANCE

BALL SCREW LUBRICANT REPLACEMENT

 Grease must be applied to ball screw. Grease can be injectedthrough the grease port of the cylinder after extending the actuator
rod to the forward stroke end. od to the forward stroke end

Recommended Grease

Ball Screw	SHELL	SHELL ALVANIA EP No. 2
	MOBIL	MOBILUX EP No. 2

\qquad

Recommended Grease

Gear Box	SHELL	SHELL ALVANIA EP No. 1
	MOBIL	MOBILUXEP No. 1

GEAR BOX LUBRICATION

The gears and bearing of the speed reducer are lubricated with grease inside the casing.
It is unnecessary to apply lubricant more than once a year. If the power cylinder is operated constantly or left unused for long periods of time, the grease condition should be checked.

WIRING

BRAKE MOTOR WIRING (Pre-wiring)
SBH type Brake motor $0.1 \mathrm{~kW}, 0.2 \mathrm{~kW}, 0.4 \mathrm{~kW}$
For 200 V Class

Separate brake power supply

LIMIT SWITCHES SPECIFICATIONS

	Stroke adjustment Limit Switch (External)	Thrust detection Limit Switch	
Power Cylinder	All Sizes	LPTC 250 ~ LPTC 32000	
Limit Switch	WLCA 2 (OMRON)	V-165-1AR5 (OMRON)	
Current	AC 250V 10A ($\cos \phi=0.4)$	AC 250V 10A ($\cos \phi=0.4)$	
		Compression-Forward	Tension-Reverse
Contact configuration			
Connection	SCS-10B ($\phi 8.5$ ~ $\phi 10.5$) PF1/2	SCL-14A ($\phi 10.5 \sim \phi 12.5$) PF1/2	

REFERENCE CIRCUITS (For the motor 0.75kw and bigger)

- SINGLE ACTION CIRCUITS

(Separate brake power supply)

- TWO MACHINE MULTIPLE DRIVE CIRCUIT (Separate brake power supply)

POSITION CONTROL

POSITION SENSOR UNIT

If position sensing is required, any or all of the following three built-in units may be used only with trunnion mount
. Internal position sensor limit switch (2 or 4 circuit)
2. Potentiometer

NOTE: Clevis adapter can not be attached when a Position Sensor Unit is used

POSITION SENSOR UNIT

INTERNAL CONSTRUCTION OF POSITION SENSOR UNIT

LIMIT SWITCHES

- Two limit switches - K2
- Four limit switches - K

Operating examples of Limit Switch application

K2		External press stop, position sensing (extension) Fixed position stopping (retraction) Fixed position stopping at both ends Press stopping at both ends, position sensing
K4		Fixed mid-position stopping, external stopping, position sensing (extension) Fixed position stopping (retraction) Fixed mid-position stopping, external stopping, position sensing both directions

\rightarrow Press stop
\rightarrow F Fixed Position Stopping
\rightarrow Position Sensing

LIMIT SWITCH SET-UP

To adjust the working position of the power cylinder, adjust the cam hat controls the limit switch. Adjust it by loosening the two set screws hown in the diagram, and rotate to desired limit setting.
Tighten set screws.
NTERNAL POSITION SENSOR LIMIT SWITCH

Type	P2VW-5L2A-1M (OMRON) or equivalent
Capacity	AC 250V $4 \mathrm{~A}(\cos \phi=0.4)$
	\varnothing
Contact configuration	\varnothing
	\varnothing

POTENTIOMETER

If the actuator rod is rotated before installation, the stroke position will
e out of phase with the potentiometer.
After installation, adjust the phase correctly. The stroke may be
CAUTION: Overtravel limit switches required.
POTENTIOMETER SPECIFICATIONS

Type	CP-30 or equivalent
Maker	Sakae
Total resistance	1 K OHM
Power rating	0.75 W
Insulation rating	AC $1000 \mathrm{~V}(1$ min. $)$
Effective electrical angle	355°
Effective angle of rotation	360° (Infinite $)$

${ }^{6)} \mathrm{P}_{2} \varnothing \rightarrow$ Rod Forward

The numbers in brackets indicate the terminals.

CONTROL OPTIONS

- Stroke indication meter

CIRCUIT BOARD

Model number	RM-80B (DC 100HA)
External Apparance	Black plastic
Scale Specification	Full stroke indicated by 100%

ROTARY ENCODER

The rotary encoder provides an interface to programmable
controllers. It may be used in combination with an AC motor speed positioning All

ENCODER SPECIFICATIONS

Output method
Output pulse number
Output wave form
Output voltage
Output resistance
Signal accuracy
Power source
Frequency response
Light source
Light receiver
Type
Maker
Incremental
60 Pulse/Rev
60 Pulse/Rev
90° phase differenc
90° phase difference
12 V Power Source: Above 10 V
12 V Power Source: Above 10 V
5 V Power Source: Above 4 V
Above $10 \mathrm{Ko} \Omega \mathrm{arce:}$ Above 4 V

$\pm 1.45 \mathrm{P} \pm 1 / 4 \mathrm{P}$
20 kHz
L.E.D.
Phototransister

SP-405Z or equivalent

ENVIRONMENTAL CONDITIONS

Operating temperature
NDITIONS
$0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
Storage temperature
Humidity
Shock

Output Circuit

Allowable Loss P MAX $=250 \mathrm{~mW}$
Low Level Output Current lot. $\mathrm{MAX}=40 \mathrm{~mA}$

1. ()) shows Terminal No.

Set the origin point by limit switch

INTERNAL WIRING OF THE POSITION LIMIT SWITCH UNIT
Use the internal terminal strip for the position sense limit switch, potentiometer and rotary encoder wiring
Use shielded wire for the rotary encoder signals.
Diagram 4

LS1		LS2		LS3		LS4		сом
a1	b1	a2	b2	а3	b3	24	b4	c
8	9	1	2	17	18	10	11	7
Rotary Encoder								
¢		+5V		Case	Sig		Sig 2	sig z
12		13		14	3		4	5

POWER CYLINDER STROKE CONTROL

There are a variety of methods by which stroke control may be
achieved. The position accuracy of the Power Cylinder varies achieved. The position accuracy of the Power Cylinder varies
depending upon stroke, speed, load size, load inertia, direction (vertical, inclined, etc.) and brake wiring. Further, some limitations may result due to the operating conditions. The following is a genera guide to the types of control available.

LIMIT SWITCHES

Two types of limit switches are available
External - stroke adjustment for upper and lower position setting. mbination of both external and internal may bosition setting. Combination of boin man be selected by using
K4 switch shown on page 42 . Accuracy will improve as speed is lowered.

PRESS STOPPING

(TC type using thrust sensing limit switches)
When using press or pull stopping, mechanical stopping is employed at both ends with a thrust sensing limit switch to control the drive This mechanical stopping allows good positioning accuracy.

POTENTIOMETER CONTROL

Potentiometer control is used when free adjustment of the stroke is required. In general, as the speed is reduced, accuracy of operation will improve. To protect against stroke overrun, it is recommended that stroke adjustment limit switches be used

CAUTION: Overtravel limit switches required.

ROTARY ENCODER CONTROL (ABSOLUTE CONTROL) ONE DIRECTION

se the rotary encoder with a programmable controller, with an attached counter. A limit switch is used to initiate counting. An externally installed adustable limit switch is recommended.

This system switches the motor off when the signal is received from the limit switch. The rod speed then decreases as it coasts towards the fina top position. When the stop position is reached the brake is applied as the rod speed decreases providing accurate positioning
CAUTION: Overtravel limit switches required.

MOTOR SPEED CONTROL

Absolute position control with acceleration and deceleration can be provided by using an A.C. inverter coupled to the programmable controller to control motor speed.

CAUTION: Overtravel limit switches required.
To matter what control method is used, where high inertia loads are to be driven horizontally or lifted or lowered vertically it is required that provision be made for control of the acceleration and deceleration rates
Failure to provide system control may result in damage to equipment or personal safety.

SPECIFICATIONS/DIMENSIONS

LPT ${ }_{C}^{B} 250$ to 4000

DIMENSIONS

LPT250

Nominal stroke	Thrust		A	XA Min	XA Max	LA
	kN	[kgf\}				
200	2.45	\{250\}	340	435	635	161
300			440	545	845	
400			540	655	1055	76.5
500			640	765	1265	
600			740	870	1470	

Nominalstroke	Thrust		A	XA M M	XA Max	LA
	kN	[kgft				
200	9.80	\{1000)	360	465	665	161
300			460	575	875	
400			560	685	1085	76.5
500			660	795	1295	
600			760	900	1500	
800			960	1120	1920	
1000	7.84	800	1160	340	2340	

\section*{LPT2000
 | $\begin{gathered} \begin{array}{c} \text { Nominal } \\ \text { stroke } \end{array} \end{gathered}$ | Thrust | | A | XA Min | XA Max | LA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | kN | [kgft | | | | |
| 200 | 19.6 | \{2000\} | 400 | 520 | 720 | 164 |
| 300 | | | 500 | 630 | 930 | |
| 400 | | | 600 | 740 | 1140 | 79 |
| 500 | | | 700 | 850 | 1350 | |
| 600 | | | 800 | 955 | 1555 | |
| 800 | | | 1000 | 1175 | 1975 | |
| 1000 | 15.7 | \{1600) | 1200 | 1395 | 2395 | |
| 1200 | 12.3 | \{1250\} | 1400 | 1615 | 2815 | |

Size \quadNominal stroke	200	300	400	500	600	800	1000	1200
LPTB2000S	56	58	60	63	65	69	73	77
LPTC2000	64	66	68	71	73	77	81	85
LPTB2000L	65	67	69	71	73	77	81	85
LPTC2000L	73	75	77	79	81	85	89	93
LPTB2000M	71	73	75	77	79	83	87	91
LPTC2000M	79	81	83	85	87	91	95	99
LPTB2000H	91	93	95	97	99	103	107	111
LPTC2000	99	101	103	105	107	111	115	119

	200	300	400	500	600	800	1000	1200	150
LPTB4000S	100	104	107	111	114	121	128	135	146
TTC400	115	119	122	126	129	136	143	130	161
LPTB4000L	99	102	106	109	112	116	126	133	144
LPTC4000L	114	117	121	124	127	131	141	148	159
LPTB4000M	118	122	126	129	133	140	146	153	164
LPTC4000M	133	137	141	144	148	155	161	168	179
LPTB4000	137	140	144	147	151	158	165	172	182
LPTC 4000 H	152	155	159	162	166	173	180	187	197

DIMENSIONS for LPT6000~LPT32000

	$\begin{gathered} \text { Speed } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$		Motor kw	Length					Height					Width		
			B_{1}	B_{2}	c	F_{1}	F_{2}	AH	BH	$1{ }^{\text {IH }}$	TH	LB	AB	тв		
LPT6000S L M H	$\begin{aligned} & 6.317 .6 \\ & 17.5 / 51 \\ & 25 / 30 \\ & 4150 \end{aligned}$			$\begin{aligned} & 0.75 \\ & 1.5 \\ & 2.2 \\ & 3 \end{aligned}$	145	$\underset{(155)}{60}$	20	50	125	120	230	160	450	-	240	260
LPT8000S L M H	$\begin{aligned} & 10 / 12 \\ & 20124 \\ & 30136 \\ & 1356 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.2 \\ & 3.7 \\ & 5.5 \end{aligned}$	175	$\begin{gathered} 65 \\ (165) \end{gathered}$	25	50	145	150	280	175	540	-	300	310	
$\begin{array}{r} \text { LPT12000L } \\ M \\ H \end{array}$	$\begin{gathered} 10 / 12 \\ 18.5 / 22 \\ 30 / 36 \end{gathered}$		$\begin{aligned} & 2.2 .2 \\ & 3.7 \\ & 5.5 \end{aligned}$	175	$\begin{gathered} 75 \\ (175) \end{gathered}$	25	50	145	150	280	175	540	-	300	350	
$\begin{array}{r} \text { LPT16000L } \\ \mathrm{M} \\ \mathrm{H} \end{array}$	$\begin{gathered} 14.5 / 17.5 \\ 20 / 24 \\ 31 / 37 \end{gathered}$		$\begin{aligned} & 3.7 \\ & 5.5 \\ & 7.5 \end{aligned}$	220	$\begin{gathered} 90 \\ (180) \end{gathered}$	32	50	175	180	329	162	609	-	360	400	
$\begin{array}{r} \text { LPT32000L } \\ \mathrm{M} \\ \mathrm{H} \end{array}$	$\begin{aligned} & 10 / 12 \\ & 1518 \\ & 20 / 24 \end{aligned}$		$\begin{aligned} & 5.5 \\ & \begin{array}{c} 5.5 \\ 71 \\ 11 \end{array} \end{aligned}$	280	$\begin{aligned} & (285) \\ & (285) \end{aligned}$	42	85	190	260	590	275	1025	-	520	540	
	Cylinder		Trunnion		End fititing				Motor					Other		
	Q	R	FT_{1}	EE	FT_{2}	JT	L	LT		KD	KL	MD	ML	SH	z	
LPT6000S L M H	80	115	40	55	40	40	65	45		$\begin{aligned} & \text { A20C } \\ & \text { A20C } \\ & \text { A25C } \\ & \text { A25C } \end{aligned}$	$\begin{aligned} & 159 \\ & 162 \\ & 190 \\ & 201 \end{aligned}$	$\begin{aligned} & 186 \\ & 186 \\ & 230 \\ & 255 \\ & \hline 55 \end{aligned}$	$\begin{aligned} & 461 \\ & 366 \\ & 540 \\ & 544 \end{aligned}$	17	16	
	95	130	45	60	45	45	70	50		A220C	$\begin{aligned} & 162 \\ & 190 \\ & 201 \\ & 201 \\ & 202 \end{aligned}$	$\begin{aligned} & 186 \\ & 230 \\ & 255 \\ & 304 \\ & 304 \end{aligned}$	$\begin{aligned} & 543 \\ & \begin{array}{l} 481 \\ 524 \\ 546 \end{array} \end{aligned}$	17	16	
$\begin{array}{r} \text { LPT12000L } \\ M \\ H \end{array}$	110	160	50	70	50	55	90	65		A25C	$\begin{aligned} & 190 \\ & \hline 190 \\ & 202 \\ & \hline 220 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 255 \\ & 304 \\ & \hline \end{aligned}$	$\begin{aligned} & 626 \\ & 699 \\ & 661 \\ & \hline \end{aligned}$	17	16	
$\begin{array}{r} \text { LPT16000L } \\ M \\ H \end{array}$	130	180	63	75	63	65	100	80		A25C	$\begin{aligned} & 201 \\ & 209 \\ & 229 \\ & \hline \end{aligned}$	$\begin{aligned} & 255 \\ & 304 \\ & 304 \\ & 304 \end{aligned}$	$\begin{aligned} & 669 \\ & \hline 761 \\ & 799 \\ & 796 \end{aligned}$	24	20	
$\begin{array}{r} \text { LPT32000L } \\ \text { L } \end{array}$	180	240	90	110	90	90	140	125		A25C	229 263	304 324	$\begin{aligned} & 591 \\ & 529 \\ & 731 \\ & \hline \end{aligned}$	27	30	

LPT6000

Nominal stroke	A	XA Min	XA Max
500	855	1010	1510
1000	1355	1560	2560
1500	1955	2210	3710

LPT8000			
$\begin{aligned} & \text { Nominal } \\ & \text { stroke } \end{aligned}$	A	XA Min	XA Max
500	900	1065	1565
1000	1400	1615	2615
1500	1900	2165	3665

LPT12000

Nominal stroke	A	XA Min	XA Max
500	950	1135	1635
1000	1450	1685	2685
1500	1950	2235	3735
2000	2450	2785	4785

LPT16000

LPT32000			
Nominal stroke	A	XA Min	XA Max
500	1315	1575	2075
1000	1815	2125	3125
1500	2315	2675	4175
2000	2815	3225	5225

	500	1000	1500
LPTB8000S	236	267	298
LPTC8000S	266	297	328
LPTB8000L	233	263	293
LPTC8000	263	293	323
LPTB8000M	251	281	312
LPTC8000M	281	311	342
LPTB8000	286	316	346
LPTC8000	316	346	376

Approx. Weight (kg)

Size	500	1000	1500
LPTB6000S	153	178	203
LPTC6000S	175	198	225
LPTB6000L	163	188	213
LPTC6000L	185	210	225
LPTB6000M	178	203	228
LPTC6000M	200	223	250
LPTB6000H	193	218	243
LPTC6000H	220	238	265

Nominal stroke	500	1000	1500	2000
Size	291	333	375	417
LTB12000L	2930	372	414	456
LPTC 12000L	330	389	432	
LPTB12000M	306	348	389	
LPTC12000M	345	387	428	471
LTB1200H	340	382	422	455
LPTC12000H	379	421	461	504

	Nominal stroke	500	1000	1500
Size	2000			
LPTB16000L	490	546	602	657
LPTC16000L	539	595	651	706
LTB16000M	525	581	637	693
LPTCC16000M	574	630	686	742
LPTB6000H	535	591	647	705
LPTC16000H	584	640	696	754

Nominal stroke				
Size	500	1000	1500	2000
LPTB32000	1260	1358	1455	1556
LPTC32000	1350	1448	1545	1646
LPTB32000	1270	1368	1465	1566
LPTCC2000M	1360	1458	1555	1646
LPTB32000	1308	1406	1503	1604
LPTC32000	1398	1496	1593	1694

OPTIONS

CLEVIS MOUNTING ADAPTOR

TRUNNION MOUNTING ADAPTOR

Ulira Heavy Duty Series

AVAILABLE DESIGN RANGE

| Model | | Thrust |
| :--- | :--- | :---: | :---: | :---: |
| (kgt) | | |\(\left.\quad \begin{array}{c}Speed mm/sec

50 / 60 \mathrm{~Hz}\end{array}\right)\)

Please supply us your requirement including application, duty cycle,
actual thrust force, speed, stroke and atmosphere. We will design the best matched Power Cylinder for you.

Example of dimension
Size: LPT63000L10

Example of dimension
Size: LPT90000M20

Multi Series

CYLINDER

- Ball screws convert rotary motion into linear motion. Cylinder stroke can be adjusted by an externally mounted limit switch

Limit switches for outdoor use are available.
Betega dust for cylinder

GEAR BOX

- Heat treated spiral bevel gears for tough dependable performance
- Craale movement is also possible with multiple cylinder operation.
- Low Maintenance

LPTB and LPTC FEATURES

TB Type Features

Economical ball screw drive
During stopping, rod position is kept stationary by driver source brake.

TC Type Features

TC Type Features

- Press-loaded stopping, stroke and self-stopping (Consult Tsubaki)
- Electrical overload indication (optional).
- When Power Cylinder is stopped, this mechanism allows absorption of shock or overload from driven side.

THRUST LIMITING MECHANISM AVAILABLE - TC TYPE

The TC Power Cylinder utilizes an internal thrust detection system. This unique system is employed to detect thrust loading-providing electrical eed back that allows press/pull stopping. Two types of disk springs with different spring rates are coupled with cam operated limit switches, which esult in a system that will allow press stopping during high speed operation in both tension and compression of the Power Cylinder. For thrust ratings in excess of 6 tons only one type of spring is used.)

The internal thrust detection mechanisms are not user adjustable and may vary $\pm 15 \%$

MULTI- SERIES POWER CYLINDER SELECTION

REQUIRED ORDER INFORMATION

STANDARD SPECIFICATIONS

Note: 1. Allowable torque of input shaft only. (Please confirm when link operation.)
2. This torque are including no-load id ing torque.

AMBIENT CONDITIONS

```
**)
Note: 1. These ambient conditions apply only to the main body of the cylinder, the motor or other optional parts may have varying requirements.
2. Bellows are recommended for dirt y or dusty surroundings.
``` 2. Bellows are recommended for dirty or dusty surroundings.
3. For use near the sea, modified paint and limit switches are available and recommended for proper protection against corrosion.

Paint: Mussel 5GY 6/0.5

\section*{MODEL NUMBER AND ORDERING EXPLANATION}

LT B 1000 BR 6 LI J
Power Cylinder Multi-Series
B type (No thrust detector
C type (Thrust detector)
Thrust: 1000kg \(\qquad\) \(\square\)
elation of input shaft rotation and rod movement (see below)

17

Type
2. Thrust and inertia load (kgf)
3. Stroke (mm)
5. Frequency of starts (times/min.)
4. Speed (mm/sec.)
7. Load characteristics

\section*{SELECTION PROCEDURE}
1. Decide what type of cylinder is needed for the application, LPTB or LPTC.
2. Choose the service factor from the table.
3. Calculate annual running distance using stroke, frequency of use working hours.
Annual running distance (km)
\(\begin{aligned} & \text { Annual running distance }(\mathrm{km}) \\ & =\text { Stroke under load }(\mathrm{m})\end{aligned} \times\) Frequency of starts (time/day)
4. When load varies during operation, calculate equivalent load as

PM \(=\frac{\mathrm{P}_{\text {Min }}+(2 \times \text { Max })}{3} \quad \begin{aligned} & \text { PM }=\text { Equivalent load (kgf) } \\ & \text { PMin }=\text { Minimum load (kgf) }\end{aligned}\)
max = Maximum load (kg)
5. For synchronous operation determine "Multi-Factor" from table.
6. Calculate Equivalent Load

Thrust \(\times\) Service Factor \(\times\) Multi-Factor

Service Factor
\begin{tabular}{l|l|c}
\hline Characteristics & \multicolumn{1}{|c}{ Typical application } & SF \\
\hline \begin{tabular}{l}
Uniform/ no shock \\
Low inertia
\end{tabular} & Opening/Closing damper, valve & 1 \\
\hline \begin{tabular}{l}
Light shock
\end{tabular} & \begin{tabular}{l}
Opening/l/osing hopper gate \\
Loading, unloading lifter
\end{tabular} & 1.2 \\
\hline Medium inertia & Buffer for belt conveyor, & 1.5 \\
\hline \begin{tabular}{ll}
Heavy shock, \\
Vibration
\end{tabular} & \begin{tabular}{l}
Heavily loaded car.
\end{tabular} \\
\hline
\end{tabular}

Multi Factor
\begin{tabular}{l|c|c|c|c|c}
\hline Number of units & 2 & 3 & 4 & 5 & 6 \\
\hline Multi factor & 1.0 & 1.0 & 1.0 & 1.25 & 1.50 \\
\hline Please consul Tsubaki when
\end{tabular}

Please consult Tsubaki when more than six units are required. L type

\section*{MOTOR SELECTION}

Various types of motors may be used, (a brake is necessary due to the high efficiency of the ball screw) power-off type brakes ar
recommended, and the torque of the brake should exceed \(150 \%\) of the required for the load.

Motor capacity is calculated as follows:
8. Ambient conditions
7. Select the type of cylinder from calculated equivalent load and stroke required.
8. Check life of cylinder by comparing annual running distance with load life chart.

Life in running distance (km)

Life is based on B10 life of ball screw.
\(k w=\frac{P \times V}{102 \times \eta}\)
\(\begin{array}{ll}\mathrm{kw} & =\text { Motor capacity (kw } \\ \mathrm{P} & =\text { Driven load (kat) }\end{array}\)
\(\mathrm{V}=\) Velocity (\(\mathrm{m} / \mathrm{sg}\))
\(\eta=\) Cylinder efficiency \((\eta=0.85)\) (at rated thrust)

Efficiency of other elements, such as gear reducers, must also
be taken into consideration.
Note:
1. If motor is larger than required, it will cause damage to the
cylinder.
2. The brake must be connected to the power source

\section*{MAINTENANCE}

\section*{BALL SCREW LUBRICANT REPLACEMENT}

Grease must be applied to ball screw. Grease can be injected hrough the grease port of the cylinder after extending the actuator do the forward stroke end.
Recommended Grease
\begin{tabular}{l|l|l}
\multicolumn{2}{l}{ Recom \begin{tabular}{l}
Bal screw \\
\end{tabular}} & SHELL \\
\cline { 2 - 3 } & MOBIL & SHELL ALVVNIA EP No. 2 \\
\hline
\end{tabular}

Lubrication Cycle for Ball Screw
\begin{tabular}{c|c}
Frequency of starts/day & Lubrication Cycle \\
\hline \(500 \sim 1000\) & 3 to 6 months \\
\hline \(100 \sim 500\) & 6 to 12 months \\
\hline \(10 \sim 100\) & 12 to 18 months \\
\hline
\end{tabular}

\section*{GEAR BOX LUBRICATION}

Gears and bearings are pre-lubricated with grease, and require no quality may deteriorate. Unit should be checked and additional grease added if necessary.
Recommended Grease
\begin{tabular}{l|l|l}
\hline \multirow{2}{*}{ Gear box } & SHELL & SHELL ALVANIA EP No. 1 \\
\cline { 2 - 3 } & MOBIL & MOBILUX EP No. 1 \\
\hline
\end{tabular}

WIRING

An example wiring diagram is shown here.
For reference only.
All Limit Switches in series.

\section*{LIMIT SWITCHES SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline & Stroke adjustment Limit Switch (External) & Thrust detection Limit Switch \\
\hline Power Cylinder & All Sizes & LPTC \(250 \sim\) LPTC 32000 \\
\hline Limit switch & WLCA 2 (OMRON) & V-165-1AR5 (OMRON) \\
\hline Current & AC 250V 10A (\(\cos \phi=0.4)\) & AC 250V 10A (\(\cos \phi=0.4)\) \\
\hline & & Forward \({ }^{\text {a }}\) (Reverse \\
\hline Contact configuration & & \\
\hline Connection & SCS-10B (\(\phi 8.5\) ~ \(\phi 10.5\)) PF1/2 & SCL-14A (\(\phi 10.5 \sim \phi 12.5\) PF1/2 \\
\hline
\end{tabular}

\section*{APPLICATION INFORMATION}

. SYNCHRONOUS OPERATIO The Multi-cylinder allows synchronous operation of several units. he above diagrams ilustrate some possible installation options.
2. OVERLOAD PROTECTION

When a LPTB type is used a torque limiter coupling is recommended on the motor output shaft to protect against overload. A torque limiter coupling is not necessary for the LPTC type, however thrust detectors for each Power Cylinder must be
ndividually wired to the power source, separate from the motor:
3. STROKE ADJUSTMENT

Stroke is limited by external limit switches at both ends. Limit switches are available for mounting to Power Cylinder body. Rod coasting" distance must be considered when determining proper positioning of limit switches. All upper and lower limit switches must be wired in series.
4. ROD ROTATION REACTION TORQUE

The thrust of the actuator rod creates a reaction torque. Generally, connection to the driven load prevents rotation. If the ctuator rod end piece is required to rotate freely or if the wire rope or chain, please contact Tsubaki.

THRUST DETECTOR
Preset thrust detector setting of LPTC Series Power Cylinder is \(150 \%\) of rated thrust and the safety device does not operate However, in applicationc inclining and lifting motion starts. device may be triggered during starting or cutting off operation. Please consult Tsubaki.
6. ALIGNMENT

Proper alignment of trunnion and rod end centers is very mportant, and care must be taken to ensure it is done correctly. A side load must not be applied to the cylinder during
operation.
7. FLOATING SHAFT
ong floating shafts may induce vibration. Shaft rigidity and backlash of coupling must be carefully checked
8. COUPLING

Chain, gear, and flange type couplings are recommended for connecting input shaft.
9. OVERHUNG LOAD (O.H.L)

Be sure that overhung ioad is below the limit (Table 1) before installing gears, sprockets and pulleys on a shaft.

Allowable O.H.L. \(\geqq \frac{\mathrm{T} \times \mathbf{f} \times \mathrm{Lf}}{\mathrm{R}}\)
Drive Factor: \(f\)
\begin{tabular}{l|l|}
\hline Chain sprocket & 1.00 \\
\hline Gear & 1.25 \\
\hline V-belt pulley & 1.50 \\
\hline Flat-belt pulley & 2.50 \\
\hline
\end{tabular}
O.H.L (kgf):
\(\mathrm{T}=\) Torque \((\mathrm{kgf} \cdot \mathrm{m})\)
\(\mathrm{f}=\) Drive
Lf = Load position factor
R = Radius of sprockets, gears, V-pulleys etc.

\(\ell=\) Distance of load position
\(Q=\) Shaft length

Table 1 Allowable overhung load
 \begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline Size - LPTB, TC & 500 & 1000 & 2000 & 4000 & 6000 & 8000 & 12000 & 16000 & 32000 & \(\ell / Q\) & 0.25 & 0.38 & 0.5 & 0.75 \\
\hline Allowable OHL (kgt) & 56 & 108 & 190 & 25 & 469 & 69 & & \\
\hline
\end{tabular}

DIMENSIONS
LPTB
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Size} & \multirow[t]{2}{*}{Stroke} & \multicolumn{2}{|r|}{Length} & \multicolumn{6}{|c|}{Input shatt} & \multicolumn{4}{|l|}{Input bracket} & \multicolumn{4}{|r|}{Gear housing} & \multicolumn{5}{|c|}{Bracket} & \multicolumn{9}{|c|}{End fititing} \\
\hline & & A & XAMin. & s & w & T & QH & QH' & K & QB & & AM & M & AB & TH & B & & N & CH \({ }^{\text {TB }}\) & B Q & R & R' & & CT & GT & HT & LT & KT & L & JT & \\
\hline (2PTB & \[
\begin{aligned}
& 200 \\
& 300 \\
& 400 \\
& 500 \\
& 600
\end{aligned}
\] & \[
\begin{gathered}
470 \\
570 \\
\hline 770 \\
\hline 770 \\
870 \\
1070
\end{gathered}
\] & \[
\begin{gathered}
565 \\
785 \\
785 \\
\hline 1900 \\
1000
\end{gathered}
\] & 15 & 5 & 5 & 25 & 22 & 220 & 50 & 85 & & & 120 & 100 & 45 & 15 & & & & 58 & 63 & & 50 & 25 & & 69 & 25 & 35 & 18 & 16 \\
\hline 1000 & 200
300
400
500
600
800 & \[
\begin{gathered}
500 \\
\hline 700 \\
7000 \\
\hline 900 \\
1100 \\
100
\end{gathered}
\] & \[
\begin{array}{|c}
605 \\
715 \\
\hline 825 \\
935 \\
1040 \\
1260 \\
\hline
\end{array}
\] & 15 & 5 & 5 & 25 & 22 & & 50 & 85 & & & & 100 & 45 & 15 & 100 & & & 70 & 75 & & & 30 & 15 & 82 & 30 & 45 & 20 & 20 \\
\hline 2000 & \[
\begin{aligned}
& 2000 \\
& 300 \\
& 300 \\
& 500 \\
& 600 \\
& 800 \\
& \hline 00
\end{aligned}
\] & \[
\begin{gathered}
560 \\
660 \\
760 \\
7600 \\
\hline 960 \\
\hline 1160
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 680 \\
790 \\
900 \\
\hline 1010 \\
1115 \\
\hline 1335
\end{array}
\] & 20 & 6 & 6 & 30 & 25 & 270 & 60 & 110 & 200 & 160 & 130 & 130 & 55 & 17 & 130 & & 8050 & 76 & 81 & 50 & 70 & 35 & & 99 & 40 & 60 & 25 & 25 \\
\hline 4000 & \[
\begin{array}{r}
200 \\
300 \\
400 \\
500 \\
800 \\
\hline 800 \\
1200 \\
1200
\end{array}
\] & \[
\begin{array}{|l}
645 \\
\hline 745 \\
845 \\
945 \\
\hline 1045 \\
1245 \\
1445 \\
\hline 1645
\end{array}
\] & \[
\begin{array}{|c|}
\hline 780 \\
\hline 890 \\
1000 \\
1105 \\
14150 \\
1640 \\
1645 \\
1865 \\
\hline
\end{array}
\] & 35 & 10 & 8 & 70 & 60 & 450 & 80 & 160 & & 230 & 190 & 190 & 80 & 17 & 190 & & 2070 & 95 & 100 & 70 & 80 & 40 & 20 & 115 & 50 & 75 & 35 & 32 \\
\hline 6000 & \[
\begin{array}{r}
5000 \\
1000 \\
1500
\end{array}
\] & \[
\begin{aligned}
& 1075 \\
& \begin{array}{c}
1575
\end{array} \\
& 2175
\end{aligned}
\] & \[
\begin{aligned}
& 1780 \\
& 1780 \\
& 2430
\end{aligned}
\] & 35 & 10 & 8 & 70 & 60 & 480 & 80 & 160 & 330 & 260 & 220 & 220 & 80 & 17 & 220 & - 260 & 6080 & 115 & - & 80 & - & 45 & - & - & 65 & - & 40 & 40 \\
\hline 8000 & \[
\begin{array}{|l|}
\hline 500 \\
1000 \\
1500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1145 \\
& 1645 \\
& 2145 \\
& \hline 160
\end{aligned}
\] & \[
\begin{aligned}
& 13100 \\
& 18400 \\
& 2410
\end{aligned}
\] & 40 & 12 & 8 & 80 & 70 & 550 & 90 & 180 & 380 & 300 & 260 & 210 & 90 & 22 & 240 & - 310 & 1095 & 130 & - & 95 & - & 50 & - & - & 70 & - & 45 & 45 \\
\hline 12000 & \[
\begin{array}{|l|l}
500 \\
1000 \\
1500 \\
2000
\end{array}
\] & \[
\begin{aligned}
& 1205 \\
& \hline 1705 \\
& \hline 2205 \\
& 2705
\end{aligned}
\] & \[
\begin{aligned}
& 1390 \\
& \text { 1940 } \\
& \text { 2490 } \\
& 3040 \\
& \hline
\end{aligned}
\] & 40 & 12 & 8 & 80 & 70 & 550 & 90 & 180 & 380 & 300 & 260 & 210 & 90 & 22 & 240 & & 50110 & 160 & - & & - & 65 & - & - & 90 & - & -55 & 50 \\
\hline 16000 & \[
\begin{array}{|l|}
\hline 500 \\
1000 \\
1500 \\
2000
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
1870 \\
2370 \\
2870 \\
2870
\end{array} \\
& \hline 170
\end{aligned}
\] & \[
\begin{aligned}
& 1570 \\
& \\
& \hline 1270 \\
& 32720 \\
& \hline 2020
\end{aligned}
\] & 50 & 14 & 9 & 85 & 75 & 630 & 120 & 220 & & 340 & 320 & 280 & 110 & 25 & 280 & - 400 & 400130 & 180 & - & 130 & - & - 80 & - & - & 100 & - & -65 & 63 \\
\hline 32000 & & \[
\begin{aligned}
& \left.\begin{array}{l}
1295 \\
2095 \\
2795
\end{array}\right)
\end{aligned}
\] & \[
\begin{aligned}
& 2055 \\
& 2065 \\
& 20555 \\
& 37505
\end{aligned}
\] & 60 & 18 & 11 & 20 & & 940 & 200 & 320 & & 520 & 500 & 450 & 175 & 25 & 450 & - 540 & 40180 & 240 & - & 180 & 0 & 125 & - & - & 140 & - & 90 & 90 \\
\hline
\end{tabular}

\title{
OPTION \\ Bellows: \(\underbrace{\text { LPTB }}_{\text {Series }} 500\) Thrust \(-4 \underbrace{\mathbf{J}}_{\text {Bellows }}\) \\ Trunnion: LPTB 500 B — T
}

\begin{tabular}{l}
Bellows \\
\hline LPTB/LPTC \\
\hline D \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Size} & \multirow[t]{2}{*}{Stroke} & \multicolumn{2}{|r|}{Length} & \multicolumn{6}{|c|}{Input shatt} & \multicolumn{4}{|l|}{Input bracket} & \multicolumn{4}{|l|}{Gear housing} & \multicolumn{4}{|c|}{Bracket} & \multicolumn{10}{|c|}{End fititing} \\
\hline & & A & XAMin. & s & w & T & QHo & QH' & K & QB & QC An & AM & & AB & TH & B & c & N & & & R & & T RT & CT & GT & HT LT & T KT & L & JT & LA & \\
\hline LPTC
500 & \[
\begin{aligned}
& 200 \\
& 300 \\
& 000 \\
& 500 \\
& 600 \\
& 8 \\
& 8
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 555 \\
\hline 655 \\
\hline 755 \\
\hline 955 \\
\hline 955 \\
\hline 1155
\end{array}
\] & \begin{tabular}{c}
650 \\
760 \\
870 \\
980 \\
7085 \\
1305 \\
\hline
\end{tabular} & 15 & 5 & 5 & 25 & 22 & 220 & 50 & 85 & 160 & & 120 & & 45 & 15 & & 130 & 35 & 58 & 16 & 636 & 50 & 25 & 12.569 & 925 & 35 & 18 & \[
\begin{aligned}
& 161 \\
& 76.5
\end{aligned}
\] & 73 \\
\hline 1000 & 2000
300
400
500
600
800 & \[
\begin{aligned}
& 5595 \\
& \hline 695 \\
& 7955 \\
& 7995 \\
& \hline 995 \\
& 1195
\end{aligned}
\] & \begin{tabular}{r}
700 \\
810 \\
920 \\
9030 \\
1135 \\
1355 \\
\hline
\end{tabular} & 15 & 5 & & & & 220 & 50 & 85 & 160 & & 120 & & 45 & 15 & & 150 & 40 & 70 & 20 & 40 & 60 & 30 & 1582 & 230 & 45 & & \[
1
\] & \\
\hline 2000 & \begin{tabular}{l}
200 \\
300 \\
300 \\
500 \\
600 \\
800 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 1975 \\
& \hline 675 \\
& \hline 775 \\
& \hline 875 \\
& \hline 1075 \\
& \hline 1275 \\
& \hline 1790
\end{aligned}
\] & \begin{tabular}{|l|}
\hline 795 \\
905 \\
9015 \\
11255 \\
1230 \\
1450 \\
\hline
\end{tabular} & 20 & 6 & & 30 & & 270 & 601 & & & & & & 55 & 17 & & 180 & 50 & 76 & 25 & 50 & 70 & 35 & 17.5 & 940 & 60 & 25 & \[
4
\] & \\
\hline 4000 & \begin{tabular}{r}
200 \\
300 \\
300 \\
400 \\
600 \\
800 \\
1000 \\
1200 \\
\hline
\end{tabular} & & \begin{tabular}{l}
925 \\
1035 \\
1145 \\
1250 \\
1360 \\
1575 \\
1790 \\
2010 \\
\hline
\end{tabular} & 35 & 10 & 8 & 70 & 60 & 450 & 80 & 16030 & 30023 & & 190 & & 80 & 17 & 19012 & 220 & 70 & 95 & 32 & 270 & 80 & 40 & 20 & 50 & 75 & 35 & \[
{ }_{97.5}^{182}
\] & 85 \\
\hline 6000 & \[
\begin{aligned}
& \text { 5000 } \\
& 10000 \\
& 1500
\end{aligned}
\] & \[
\begin{aligned}
& 1670 \\
& \hline 1620 \\
& 2250
\end{aligned}
\] & \[
\begin{aligned}
& 11825 \\
& \hline 185 \\
& 2525 \\
& \hline
\end{aligned}
\] & 35 & 10 & 8 & 70 & 60 & 480 & 80 & 16033 & 3302 & & 220 & 220 & 80 & 17 & 220139 & 260 & 80 & 115 & 40 & 80 & - & 45 & - - & -65 & - & 40 & - & \\
\hline 8000 & \[
\begin{array}{r}
1500 \\
500 \\
1000 \\
1500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2240 \\
& \hline 125 \\
& 1745 \\
& \hline 2245
\end{aligned}
\] & \[
\begin{aligned}
& 2525 \\
& \begin{array}{l}
1410 \\
1960 \\
2510
\end{array} \\
& \hline
\end{aligned}
\] & 40 & 12 & 8 & 80 & & 550 & 90 & 18038 & 38030 & & 260 & 210 & 90 & 22 & 240145 & 5310 & 95 & 130 & 45 & 95 & - & 50 & - - & -70 & - & 45 & - & \\
\hline 12000 & \[
\begin{array}{|l|l}
\hline 500 \\
1000 \\
1500 \\
2000 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1305 \\
& 1805 \\
& 2805 \\
& 2805 \\
& \hline 1065 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1490 \\
& 2040 \\
& 2590 \\
& 3140 \\
& \hline 140
\end{aligned}
\] & 40 & 12 & 8 & 80 & & 550 & 90 & 18038 & 3803 & 300 & 260 & & 90 & 22 & 24016 & 350 & 110 & 160 & 50 & 5110 & - & 65 & - - & 90 & - & 55 & - & \\
\hline 16000 & \[
\begin{aligned}
& 500 \\
& 1000 \\
& 1500 \\
& 2000 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 1460 \\
& \hline 1960 \\
& 2460 \\
& 2960 \\
& 2960
\end{aligned}
\] & \[
\begin{aligned}
& 1660 \\
& 2100 \\
& 2760 \\
& 3310 \\
& \hline 3010
\end{aligned}
\] & 50 & 14 & 9 & 85 & 75 & 630 & 120 & 22044 & 440 & & 320 & 280 & 110 & 25 & 280170 & 400 & 130 & 180 & 63 & 3130 & - & 80 & - - & 100 & - & 65 & - & \\
\hline 32000 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 1950 \\
& \hline 2450 \\
& 2950 \\
& 3450 \\
& 340
\end{aligned}
\] & \[
\begin{aligned}
& 2210 \\
& 22700 \\
& 3370 \\
& 3860 \\
& \hline 3800
\end{aligned}
\] & 60 & 18 & 11 & & & & 200 & 32068 & 680 & & 500 & 450 & 175 & 25 & 450238 & 540 & 180 & 240 & 90 & O 180 & - & 125 & & - 140 & - & 90 & & \\
\hline
\end{tabular}

\section*{TRUNNION ADAPTER DIMENSIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Size} & AY & BY & FY & HY & RY & FT & F & k & M & N & R & z & \\
\hline & 500 & 130 & 180 & 15 & 150 & 40 & 50 & - & 45 & 65 & 25 & 15 & 18 & \\
\hline \({ }_{\text {L-LTB }}^{\text {Lic }}\) & 1000 & 130 & 180 & 15 & 150 & 40 & 50 & - & 45 & 65 & 25 & 15 & 18 & \\
\hline \({ }_{\text {L Lrig }}\) & 2000 & 150 & 200 & 15 & 170 & 50 & 60 & - & 45 & 65 & 25 & 20 & 18 & \\
\hline \({ }_{\text {L }}^{\text {LTPIE }}\) & 4000 & 180 & 240 & 20 & 170 & 70 & 80 & - & 55 & 80 & 30 & 35 & 22 & \\
\hline \({ }_{\text {L Pric }}\) & 6000 & 180 & 240 & 20 & 170 & 70 & 80 & - & 55 & 80 & 30 & 35 & 22 & \\
\hline & 8000 & 250 & 320 & 25 & 280 & 80 & 90 & 80 & 80 & 185 & 35 & 40 & 27 & \\
\hline \({ }_{\text {LTPIE }}\) & 12000 & 250 & 320 & 25 & 280 & 80 & 90 & 80 & 80 & 185 & 35 & 40 & 27 & \\
\hline \({ }_{\text {L LTPIE }}\) & 16000 & 320 & 400 & 30 & 320 & 100 & 120 & 90 & 90 & 210 & 40 & 50 & 33 & \\
\hline \(\stackrel{\text { Lipte }}{\text { Licte }}\) & 32000 & 400 & 500 & 35 & 380 & 160 & 200 & 120 & 120 & 275 & 50 & 80 & 45 & \\
\hline
\end{tabular}

\section*{CONTROL BOXES}

\section*{CONTROL BOXES FOR POWER CYLINDERS}
1. TYPE \(\AA \ldots \ldots\). The Rod goes forward/reverse when the forward/reverse switch is pushed
2. TYPE B The rod goes forward/reverse by a fixed stroke after the forward/reverse switch is pushed switch is pushed The rod will stop at any position when the stop switch is pushed.
3. TYPE \(\subset \cdots \cdots \cdots \cdots \cdots \cdots . .\). Has both \(\triangle\) and \(\mathbb{B}\) type functions.

A built-in potentiometer is actuated by the movement of the rod and shows the position of the rod on a meter.
Type C for Mini Series
Types A \& B
Type D

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Model \& Type} & \multicolumn{3}{|c|}{Power Cylinder} & \multicolumn{4}{|c|}{Basic Specifications} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Indoor type Type}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Outdoor type } \\
\hline \text { Type }
\end{gathered}
\]}} \\
\hline & \multirow[t]{2}{*}{G series} & \multirow[t]{2}{*}{*T series} & \multirow[t]{2}{*}{Ultra Heavy
series} & \multirow[t]{2}{*}{Power
Source} & \multirow[t]{2}{*}{Motor} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Break } \\
\text { capacity }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Thermal } \\
& \text { reflal } \\
& \text { setirg } \\
& \text { current }
\end{aligned}
\]} & & & & & & & & \\
\hline & & & & & & & & A & в & c & D & \multicolumn{2}{|r|}{B} & \multicolumn{2}{|r|}{D} \\
\hline LP40C-C & - & - & - & \[
\begin{aligned}
& 50 / 60 \mathrm{~Hz} \\
& 100 \mathrm{~V}
\end{aligned}
\] & 4P-20W & 2A & 0.5A & \(\triangle\) & \(\triangle\) & - & - & \(\triangle\) & \(\triangle\) & \(\triangle\) & \(\triangle\) \\
\hline LP250C- \(\square\) & - & \[
\begin{aligned}
& \text { 250S.L. } \\
& \text { 500S. }
\end{aligned}
\] & & \multirow{11}{*}{\({ }_{2}^{50 / 60 \mathrm{~Hz}} 2\)} & 4P-0.1 1 WW & 3 A & 0.65 A & \(\bullet\) & - & 0 & O & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP5000- \(\square\) & - & \[
\begin{aligned}
& 250 \mathrm{M} \\
& \text { S00 } \\
& \text { 1000 }
\end{aligned}
\] & & & 4P-0.2kW & 4 A & 1.2A & \(\bullet\) & - & - & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\triangle\) & \(\triangle\) \\
\hline LP10000- \(\square\) & \[
\begin{aligned}
& \text { LPGO70 } \\
& \text { LPG100 } \\
& \text { LPG300 }
\end{aligned}
\] & \[
\begin{aligned}
& 250 \mathrm{H} \\
& 1000 \mathrm{~L} 00 \mathrm{M} \\
& 10000 \mathrm{~L}
\end{aligned}
\] & & & 4P-0.4kW & 5A & 2.5A & \(\bullet\) & - & O & - & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP20000- \(\square\) & - & \[
\begin{array}{ll}
500 \mathrm{H} & 1000 \mathrm{M} \\
2000 \mathrm{~L} \\
6000 \mathrm{~S} & 4000 \mathrm{~S} \\
\hline
\end{array}
\] & & & 4P-0.75kW & 10A & 4.0A & \(\bullet\) & - & O & \(\bigcirc\) & \(\bigcirc\) & 0 & \(\triangle\) & \(\triangle\) \\
\hline LP40000- \(\square\) & - & \[
\begin{aligned}
& \text { 1000H 2000M } \\
& \text { 4000 } 6000 \mathrm{~L} \\
& 8000 \mathrm{~S}
\end{aligned}
\] & & & 4P-1.5kW & 15A & 8.0 A & \(\bullet\) & - & O & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP80000- \(\square\) & - & 2000 H 4000 M 6000H 8000L 12000L & & & 4P-2.2kW & 15A & 9.3 A & \(\bullet\) & - & O & O & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP16000C- \(\square\) & - & \[
\begin{aligned}
& 4000 \mathrm{H} 6000 \mathrm{H} \\
& 8000 \mathrm{M} \\
& 16000 \mathrm{~L}
\end{aligned}
\] & & & 4P-3.7kW & 20A & 14.6A & \(\bullet\) & - & \(\bigcirc\) & O & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP32000C- \(\square\) & - & \[
\begin{aligned}
& 8000 \mathrm{H} \text { 12000H } \\
& 16000 \mathrm{M} \\
& 32000 \mathrm{~L} \\
& \hline
\end{aligned}
\] & & & 4P-5.5kW & 40A & 22.6A & 0 & - & O & O & \(\bigcirc\) & 0 & \(\triangle\) & \(\triangle\) \\
\hline LP630000- \(\square\) & - & 16000 H
32000 M & LP63000L & & 4P-7.5kW & 50A & 28.9A & 0 & - & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP900000- \(\square\) & - & 32000 H & LP63000M LP90000L & & 4P-11kW & 75A & 44.5A & 0 & - & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline LP125000C- \(\square\) & - & & \[
\begin{aligned}
& \text { LP63000H } \\
& \text { LP900000M } \\
& \text { LP125000 } \\
& \hline
\end{aligned}
\] & & 4P-15kW & 100A & 58.0A & \(\bigcirc\) & O & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\triangle\) & \(\triangle\) \\
\hline
\end{tabular}

\section*{ENQUIRY SHEET}

\section*{Specify the following when ordering}
\begin{tabular}{|c|c|c|}
\hline Item & Description & Application sketch \\
\hline \multicolumn{2}{|l|}{Name of equipment and machinery} & \\
\hline \multirow[t]{2}{*}{Working load} & Push kgf & \\
\hline & Pull kgf & \\
\hline Stroke & mm & \\
\hline Speed & \(\mathrm{mm} / \mathrm{sec}\). & \\
\hline \multirow[t]{2}{*}{Power} & Phase V & \\
\hline & Frequency Hz & \\
\hline \multirow[t]{2}{*}{Frequency of operation} & Times/mm & \\
\hline & Times/day & \\
\hline Fitting method & Trunnion, Clevis & \\
\hline \multirow[t]{2}{*}{Atmosphere} & Ambient temp. & \\
\hline & Moisture, gas, dust & \\
\hline Place to be installed & Indoors or outdoors & \\
\hline Control box & \begin{tabular}{l}
Necessary or unnecessary. \\
If necessary specify control method
\end{tabular} & \\
\hline Optional parts required & & \\
\hline Remarks & & \\
\hline
\end{tabular}

\section*{\(\triangle\) SAFETY POINTS}

\section*{Warning}

To avoid danger please comply with the below points
- Do not release the brake when the Power Cylinder is supporting a load. If the brake is released when under loaded conditions, suspended objects may fall or movable parts may suddenly move.
- When manually operating the Power Cylinder by the manual shaft, make sure that the Power Cylinder is no
supporting a load. Operate the Power Cylinder according to the handling manual.
- When using for suspended operations, provide safety shelving to prevent falling and never stand under the cylinder when in operation.
- Observe the Labor Safety \& Hygiene Regulations, General Criteria, Paragraph 1, Chapter 1, Edition 2, or your local regulations of such.
- Installation, removal, maintenance and inspection:

Carry out operation according to the handling manual.
When performing electrical wiring observe Laws and Regulations such as Electricity Equipment Criteria and Extension Rules, as well as following cautions (Ex. direction, space, operating conditions, etc) indicated in the handling manual.
Especially, follow the instructions with regard to grounding so as to prevent electric shocks.
Shut down the power source and make sure that power will not be turned on accidentally (Ex. Power lock etc.) Wear the proper work clothes and protective accessories (safety glasses, gloves, safety shoes, etc.)

\section*{Caution \\ To avoid accidents please comply with the below points}
- Always operate within the allowable stroke range. Operating the Power Cylinder outside the allowable stroke range may result an accident. - adjusted correctly.
- Operate the Power Cylinder within correct electrical voltage range. Operating the Power Cylinder outside this range may result in motor burnout or fire.
- Efficiency and functioning of parts may lessen with wear and age. Carry out periodic inspection as set out in the
handling manual. When functioning or efficiency is defective please contact a Tsubaki distributor for repairing.
- The Handling manual is supplied with the product. Please read it before use and refer to the instructions to ensure Tsubaki or your Tsubaki distribur handling manual cannot be found, please request a replacement copy through The handling manual must be

\section*{Caution}
- The product information contained in this catalog is mainly to assist in selection of machinery. Before using this The product information contained in "his catalog is mainly to assist in selection of machinery.```

